

INTERNATIONAL JOURNAL OF CONTEMPORARY AFRICA RESEARCH NETWORK Publication of Contemporary Africa Research Network (CARN) Volume 2 (1), 2024 ISSN: 1115 – 585x Available online: https://journals.iapaar.com/index.php/ijcarn/issue DOI: 10.5281/zenodo.12103430

Technological impact assessment of Blockchain Technology on the synergism of decentralized exchange and pooled trading platform

Nseabasi P. Essien Department of Computer and Robotic Education University of Uyo, Nigeria

James, Gabriel Gregory

Department of Computing, Topfaith University, Nigeria

Ufford, Victor Ufford Department of Computer and Robotic Education University of Uyo, Nigeria

Abstract: Blockchain technology has emerged as a disruptive force in the financial industry, offering decentralized solutions that redefine traditional models of exchange and trading. This paper investigates the technological influence of blockchain technology on the collaboration between decentralized exchanges (DEX) and pooled trading platforms. Through a comprehensive evaluation of their underlying technologies, functionalities, and implications, this study aims to illuminate their transformative potential and implications for the future of digital asset trading. By analyzing the benefits, challenges, and synergies inherent in integrating DEX and pooled trading platforms; valuable insights into the evolving landscape of decentralized finance (DeFi) are provided. The research addresses two main research questions: (i) Are there significant differences in the mean impact assessments between the Uniswap platform and the SushiSwap platform? (ii) Are there significant differences in the mean impact assessments across other decentralized exchange and pooled trading platforms? To test these questions, hypotheses are formulated for both t-tests and ANOVA comparisons. The study employs a methodological approach that includes a thorough literature review, data collection from online platforms, conceptual framework design, architectural analyses, and quantitative methods to analyze trading metrics. Results from cluster analysis and impact assessments of various platform upgrades reveal insights into blockchain technology's evolution and platforms' efforts to address challenges in decentralized finance ecosystems. Statistical tests, including t-tests and ANOVA, show no significant differences in impact assessments between platforms, indicating similar performance across various blockchain platforms. While this study finds no significant differences in impact assessments between platforms, it underscores blockchain technology's transformative potential in reshaping the digital asset trading landscape. Collaboration, innovation, and regulatory alignment are vital for fully harnessing blockchain's power in decentralized finance. It is pertinent that major stakeholders should continue to explore emerging trends and challenges in blockchain

technology, fostering a supportive environment for innovation and growth in the financial ecosystem.

Keywords: Block Chain Technology, Technological Impact Assessment, Decentralized Exchanges, Pooled Trading Platforms

Introduction

In recent years, blockchain technology has evolved from its humble beginnings as the underlying technology behind cryptocurrencies to a versatile and transformative force with widespread applications across various industries. As the technology continues to mature, several notable trends have emerged, shaping its development and adoption. From decentralized finance (DeFi) and non-fungible tokens (NFTs) to interoperability solutions and enterprise blockchain adoption, these trends reflect the ongoing evolution of blockchain technology and its growing impact on the global economy. Decentralized exchanges (DEX) and pooled trading platforms represent significant current trends in blockchain technology, offering innovative solutions for digital asset trading. Decentralized exchanges enable peer-to-peer trading of digital assets without the need for intermediaries. They operate on blockchain networks and allow users to trade directly from their wallets, eliminating the need for centralized authorities to facilitate transactions. Whilest, Pooled trading platforms on the other hand, also known as liquidity pools or automated market makers (AMMs), enable users to contribute liquidity to trading process and ensure liquidity for all traded assets.

The implication of this is that; DEX platforms provide new opportunities for businesses to participate in token sales, list their digital assets, and access liquidity without relying on traditional exchanges and also offer greater transparency, security, and censorship resistance compared to centralized exchanges. Similarly, Pooled trading platforms offer businesses a cost-effective way to access liquidity for their digital assets and facilitate trading without relying on traditional market makers and also enable businesses to participate in decentralized finance (DeFi) ecosystems and earn passive income from providing liquidity.

In real sense, blockchain technology (BCT) is a decentralized digital ledger system that records transactions across multiple computers in a way that ensures the security, transparency, and immutability of data. Here are some key aspects of blockchain technology (Yaga et al., 2018). According to (Yaga et al., 2018) Blockchain technology is normally associated with cryptocurrencies such as Bitcoin. It is a database of record of transactions which is distributed, and which is validated and maintained by a network of computers around the world. Blockchain is one of the most important technical invention in the recent years. This digital technology is a transparent money exchange system that has transformed the way a business is conducted (Sarmah, 2018) (James, G. G., Ekpo, W. F., Chukwu, E. G., Michael, N. A., & Ebong, O. A, Okafor, P. C, 2024).

BCT is a virtual live database that creates a real-time, unique, and permanent record entry for every financial transaction (Willie, 2019) (Sharma et al., 2021). It is a groundbreaking

disruptive technology that has revolutionized digital currencies and financial assets (., 2016) (Frizzo-Barker et al., 2020). Blockchain technology (BCT) offers transparent, cryptographic, tamper-proof transaction and data storage mechanisms (Saberi et al., 2019) Pooled Trading Platform. Block chain being a trending technology has many application areas cutting across Legal Applications, Social Applications, Financial Applications, Asset Tracking, as well as in Engineering Applications (Chukwu, James, Benson-Emenike, Michael, 2023). This is because the technology is a revolutionary innovation with capability to transform many existing traditional systems into more secure, distributed, transparent, collaborative systems while empowering its users. Because of these versatile features, Blockchain technology enables peer-to-peer transactions without the need for intermediaries such as banks, financial institutions, or government agencies. This can lead to disintermediation in many industries, reducing transaction costs and increasing efficiency. Indeed, a comprehensive technological impact assessment of blockchain technology includes but not limited to its potential benefits, challenges, and implications across various domains, including finance, supply chain management, governance, and social inclusion. As such, the evolving regulatory landscape and technological advancements shaping the future of blockchain adoption should greatly be considered. The synergism of decentralized exchanges and pooled trading platforms represents a significant advancement in blockchain technology, providing users with greater autonomy, liquidity, and accessibility in the digital asset ecosystem.

However, it requires continuous technological innovation, regulatory alignment, and community engagement to realize its full potential and address emerging challenges effectively. This synergism of decentralized exchanges (DEX) and pooled trading platforms within the context of blockchain technology offers several technological impacts and assessments. One of such is the facilitation of peer-to-peer trading of digital assets without the need for intermediaries. They leverage block chain technology to enable trustless transactions, where users retain control of their private keys and funds. The advent of block chain technology has introduced unprecedented opportunities for innovation in the realm of finance, particularly in the domain of digital asset exchange and trading.

Assessing the technological impact of block chain on the synergism of decentralized exchanges and pooled trading platforms is crucial for understanding the potential benefits and challenges associated with this integration. In summary, evaluating the technological impact of block chain on the synergism of decentralized exchanges and pooled trading platforms helps in understanding how this integration enhances efficiency, security, and user experience while addressing potential challenges and ensuring regulatory compliance. It provides insights that guide the development and evolution of these platforms in the rapidly changing landscape of decentralized finance (DeFi). The study will expose the readers to the capability of block chain to enhance the efficiency of decentralized exchanges and pooled trading platforms by providing a transparent and secure way to execute and settle transactions. It shall confirm the possibility of smart contracts on the block chain to automate, processes, reduced the need for intermediaries. Assessing the technological impact involves evaluating how block chain integration, improves

transaction speed and reduces settlement times, contributing to a more efficient trading environment.

Decentralized Exchange

A decentralized exchange (DEX) is a peer-to-peer (P2P) marketplace that connects cryptocurrency buyers and sellers. In contrast to centralized exchanges (CEXs), decentralized platforms are non-custodial, meaning a user remains in control of their private keys when transacting on a DEX platform, for example the *UNISWAP* and *SUSHIWAP* which runs on the Ethereum blockchain.

Uniswap is a decentralized cryptocurrency exchange that uses a set of smart contracts to execute trades. It is an open source project and falls into the category of a DeFi product because it uses smart contracts to facilitate trades. SushiSwap is a decentralized exchange (DEX) in which users can exchange between different virtual currencies using a connected cryptocurrency wallet, such as MetaMask.

Liquidity pools are a mechanism by which users can pool their assets in a DEX's smart contracts to provide asset liquidity for traders to swap between currencies. Liquidity pools provide much-needed liquidity, speed, and convenience to the DeFi ecosystem. This liquidity pool enhances the relationship between pool trading and decentralized exchange. Liquidity pools primarily serve to facilitate automated and permissionless trading between crypto currencies and tokens on decentralized exchanges (DEX). Decentralized exchanges allow users to swap one cryptocurrency for another by executing a trade against a liquidity pool. The primary purpose of a liquidity pool in a decentralized exchange is to facilitate peer-to-peer (P2P) trading on DEXs. By providing a steady supply of buyers and sellers, liquidity pools ensure that trades can be executed quickly and efficiently. With this we come up with the idea to evaluate the economic impact of block chain technology on the hybridization of Decentralized Exchange and Pooled Trading Platform.

This paper seeks to explore the technological impact of block chain technology on the synergism between decentralized exchanges and pooled trading platforms. By conducting a comprehensive assessment of the underlying technologies, functionalities, and implications of these decentralized systems, the aim is to shed light on their transformative potential and implications for the future of digital asset trading. With the analysis of the benefits, challenges, and synergies inherent in the integration of DEX and pooled trading platforms, this study aims to provide valuable insights into the evolving landscape of decentralized finance (DeFi) and its implications for the broader financial ecosystem.

Traditional centralized exchanges have long dominated the market, but their limitations in terms of security, transparency, and accessibility have prompted the emergence of decentralized alternatives. This study tries to exposed the fact that among these alternatives, decentralized exchanges (DEX) and pooled trading platforms have gained traction for their ability to harness

block chain technology to facilitate peer-to-peer transactions, automate trade execution, and empower users with greater control over their assets.

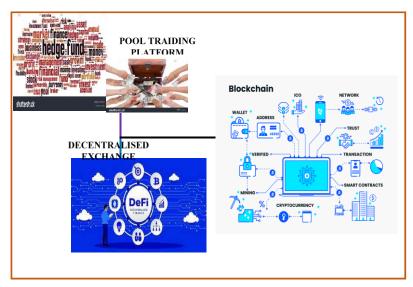
Research Questions

- (i) Are there any significant differences in the mean impact assessments between Uniswap platform and SushiSwap platform?
- (ii) Are there any significant difference in the mean impact assessments across the other decentralized exchange and pooled trading platform?

Hypothesis

For the t-test comparing impact assessments between Uniswap and SushiSwap, the null and alternative hypotheses are as follows:

Null Hypothesis (H₀): There is no significant difference in the mean impact assessments between Uniswap and SushiSwap.


Alternative Hypothesis (H₁): There is a significant difference in the mean impact assessments between Uniswap and SushiSwap.

Null Hypothesis (H0): There is no significant difference in the mean impact assessments across the different platforms.

Alternative Hypothesis (H1): There is a significant difference in the mean impact assessments across the different platforms.

Design and methodology

At the course of this work, a thorough review of existing literature on block chain technology was conducted, decentralized exchanges (DEX), pooled trading platforms, and synergistic relationship which enabled the identification of key concepts, trends, and research gaps in the field. Data were collected from online platforms through facebook and whatsApp comminications which assisted in obtaining insights into the technical aspects and operational mechanisms of block chain-based exchanges and trading platforms. A conceptual framework which serves as a foundation for the technological impact assessment was designed outlining the core components, functionalities, and interactions of block chain technology, DEX, and pooled trading platforms. We based our ideology on the selection of representative case studies of prominent decentralized exchanges and pooled trading platforms. Architectural analyses, tokenomics, governance models, and user experiences were carried out to identify the best practices and lessons learned. A quantitative methods was used to analyze trading volumes, liquidity levels, transaction speeds, and other performance metrics of decentralized exchanges and pooled trading platforms. These matrices were compared with that of the traditional centralized exchanges. Figure 1 shows the schematic framework.

Fig. 1: Schematics Framework of the proposed concept

Data Collection

Data were collected through online platform and these data were analyzed. Table 1 shows the data collected.

Table 1: Data collected for the technological impact assessment of block chain technology on the synergism of decentralized exchange and pooled trading platform.

Date	Platform	Feature/Upgrade	Description	Impact Assessment
0 2023- 01-15	Uniswap	Integration of Layer 2 Scaling Solution	Implemented zkRollups to enhance transaction t	Significant reduction in transaction costs and
1 2023- 02-28	SushiSwap	1 Cross-Chain Integration with Binance Smart Cha	1 Enabled users to swap assets between Ethereum	1 Expanded liquidity pools and access to a wider
2 2023- 04-10	Curve Finance	2 Governance Upgrade	2 Introduced a new voting mechanism to enhance c	2 Increased community engagement and transparenc
3 2023- 05-20	Balancer	3 Introduction of Dynamic Fee Adjustment	3 Implemented a dynamic fee model based on netwo	3 Improved efficiency in fee management, ensurin
4 2023- 07-05	Bancor	4 AMM Algorithm Optimization	4 Upgraded the automated market maker (AMM) algo	4 Enhanced trading experience with minimized pri

5 2023-	Loopring	5	5 Rolled	5 Drastic reduction
08-18	LOOPLING	Layer 2 Scaling	out Loopring	in gas fees and
00 10		Upgrade	3.0 with	latency, fac
		opgrade	enhanced	
			scalabil	
6 2023-	linch	6	6 Enhanced	6 Improved
10-02		Aggregation	routing	execution prices and
		Protocol	algorithms to	reduced trade sl
		Enhancement	provide	
			better	
7 2023-	Kyber	7	7	7 Increased
11-15	Network	Dynamic Market	Introduced	liquidity provision
		Making (DMM)	DMM to	with tighter spr
		Implementation	automatically	
			adjust market	
			•••	
8 2024-	Synthetix	8	8 Added	8 Diversified
01-08		Synthetic Asset	support for a	trading options and
		Expansion	broader range of	expanded marke
9 2024-	Yearn	9	synthetic 9 Optimized	9 Enhanced yield
9 2024-	Finance	9 Yield Farming	yield farming	generation
02 20	rinance	Optimization	strategies to	opportunities,
		opermización	maximize	incen
10 2024-	Aave	10	10 Improved	10 Increased
04-05	110.00	Flash Loan	the	usability and safety
		Enhancements	efficiency	of flash loans,
			and security	,
			of flash	
11 2024-	Compound	11	11	11 Enhanced capital
05-18		Algorithmic	Introduced	efficiency and
		Interest Rate	algorithmic	utilization ra
		Adjustment	adjustments	
			to	
1.0			interest	
12 2024-	Bancor	12	12	12 Simplified asset
07-01		AMM Automated	Implemented	management and risk
		Portfolio	automated portfolio	mitigatio
		Management	rebalancing	
			an	
13 2024-	Uniswap	13	13 Revamped	13 Strengthened
08-15	STILL TO ALL	Protocol	governance	community trust and
		Governance	model with	engagement, 1
		Overhaul	increased	
			commu	
14 2024-	SushiSwap	14	14	14 Improved
09-28		Flash Swaps	Introduced	liquidity access and
		Implementation	flash swaps	reduced transact
			feature for	
			instant	
			tok	
15 2024-	Curve	15	15 Enhanced	15 Increased
11-10	Finance	Stablecoin Pool	stablecoin	stability and
		Optimization	liquidity	

			pools with	efficiency in
			dynam	stableco
16 2025-	Balancer	16	16 Launched	16 Expanded
01-02	DATAILET	Cross-Chain	cross-chain	liquidity options and
01 02		Liquidity	liquidity	improved intero
		Aggregation	pools to	
		1199109401011	enable	
17 2025-	Loopring	17	17	17 Drastically
02-20	Hoopiting	ZK-Rollup	Integrated	reduced gas fees and
02 20		Integration	zero-	improved tran
		incegración	knowledge	
			rollups to	
			enhance s	
18 2025-	linch	18	18 Optimized	18 Improved trade
04-10	TTHOM	Smart Order	smart order	execution quality and
01 10		Routing	routing	reduced s
		Optimization	algorithms to	
		op of min 2 d of our	ac	
19 2025-	Kyber	19	19 Released	19 Improved
06-01	Network	Automated	an updated	liquidity depth and
	1.00.01.1	Market Making	version of	capital efficienc
		(AMM) V2	AMM with	
		, , –	enhanc	
20 2025-	Synthetix	20	20 Expanded	20 Increased market
07-20		Decentralized	offerings to	coverage and trading
-		Derivatives	include a	opportun
		Market	wider range	
		Expansion	of	
21 2025-	Aave	21	21	21 Enhanced capital
09-10		Credit	Introduced a	efficiency and
		Delegation	credit	increased lend
		Mechanism	delegation	
			feature	
			allowin	
22 2025-	Compound	22	22 Enhanced	22 Improved capital
11-05		Algorithmic	collateral	efficiency and risk
		Collateral	management	managemen
		Optimization	algorithms to	
			0	
23 2026-	Uniswap	23	23	23 Enhanced capital
01-01		Cross-Protocol	Introduced	efficiency and
		Liquidity Pools	interoperable	liquidity acce
			liquidity	
			pools	
			allow	
0 2023-	Uniswap	1 Cross-Chain	1 Enabled	1 Expanded
01-15		Integration	users to swap	liquidity pools and
		with Binance	assets	access to a wider
		Smart Cha	between	
			Ethereum	
1 2023-	SushiSwap	2	2	2 Increased
02-28		Governance	Introduced a	community engagement
		Upgrade	new voting	and transparenc
			mechanism to	
			enhance c	
	•	•	•	

Data preprocessing for the cluster analyses

The data was preprocessed to form the dataset and stored as a csv file in excel format. Table 2 shows the preprocessed dataset.

Table 2: Preprocessed dataset

	0-4-	01-46	Factoria (Universida	-	-				Ē
-	Date	Platform		Description	Impact Assessment				
2	1/15/2023		Integration of Layer 2 Scaling Solution	Implemented zkRollups to enhance transaction throughput and reduce gas fees.	Significant reduction in tran				
3		SushiSwap	-	Enabled users to swap assets between Ethereum and Binance Smart Chain networks seamlessly.	Expanded liquidity pools an			· ·	
4		Curve Finance	Governance Upgrade	Introduced a new voting mechanism to enhance community governance and decision-making processes.	Increased community engage				
5	5/20/2023	Balancer	Introduction of Dynamic Fee Adjustment	Implemented a dynamic fee model based on network congestion levels to optimize transaction costs.	Improved efficiency in fee n	lanagement	t, ensuring	competitive rat	
6	7/5/2023	Bancor	AMM Algorithm Optimization	Upgraded the automated market maker (AMM) algorithm to improve price stability and reduce slippage.	Enhanced trading experience				
7	8/18/2023	Loopring	Layer 2 Scaling Upgrade	Rolled out Loopring 3.0 with enhanced scalability, enabling higher throughput and lower costs.	Drastic reduction in gas fees	and latency	, facilitatin	ng high-frequenc	
8	10/2/2023	1inch	Aggregation Protocol Enhancement	Enhanced routing algorithms to provide better liquidity aggregation across multiple decentralized exchanges.	Improved execution prices a	nd reduced	trade slipp	page, resulting in	
9	11/15/2023	Kyber Network	Dynamic Market Making (DMM) Impleme	Introduced DMM to automatically adjust market maker rates based on market conditions and inventory levels	Increased liquidity provision	with tighte	r spreads,	offering improv	
10	1/8/2024	Synthetix	Synthetic Asset Expansion	Added support for a broader range of synthetic assets, including commodities, stocks, and cryptocurrencies.	Diversified trading options a	nd expande	ed market e	exposure, attract	
11	2/20/2024	Yearn Finance	Yield Farming Optimization	Optimized yield farming strategies to maximize returns for liquidity providers across various DeFi protocols.	Enhanced yield generation of	pportunitie	s, incentiv	izing more capit	
12	4/5/2024	Aave	Flash Loan Enhancements	Improved the efficiency and security of flash loan protocols by implementing additional risk mitigation measu	Increased usability and safe	y of flash lo	ans, encou	uraging more inn	
13	5/18/2024	Compound	Algorithmic Interest Rate Adjustment	Introduced algorithmic adjustments to interest rates based on supply and demand dynamics to optimize utiliz	Enhanced capital efficiency	and utilizati	on rates, re	esulting in highe	
14	7/1/2024	Bancor	AMM Automated Portfolio Management	Implemented automated portfolio rebalancing and asset management features for liquidity providers.	Simplified asset manageme	nt and risk n	nitigation s	strategies, impro	
15	8/15/2024	Uniswap	Protocol Governance Overhaul	Revamped governance model with increased community participation and transparency in decision-making.	Strengthened community tr	ust and enga	agement, le	eading to more i	
16	9/28/2024	SushiSwap	Flash Swaps Implementation	Introduced flash swaps feature for instant token swaps without the need for liquidity provision.	Improved liquidity access ar	d reduced t	ransaction	settlement time	
17	11/10/2024	Curve Finance	Stablecoin Pool Optimization	Enhanced stablecoin liquidity pools with dynamic fee adjustment mechanisms to balance supply and demand	Increased stability and effic	ency in stab	lecoin trad	Jing, reducing sli	
18	1/2/2025	Balancer	Cross-Chain Liquidity Aggregation	Launched cross-chain liquidity pools to enable seamless asset swaps between different blockchain networks.	Expanded liquidity options	ind improve	d interope	erability, facilitat	
19	2/20/2025	Loopring	ZK-Rollup Integration	Integrated zero-knowledge rollups to enhance scalability and privacy for decentralized exchange transactions	Drastically reduced gas fees	and improv	ed transact	tion throughput,	
20	4/10/2025	1inch	Smart Order Routing Optimization	Optimized smart order routing algorithms to achieve the best execution prices across multiple liquidity source	Improved trade execution q	uality and re	aduced slip	page, maximizir	
21	6/1/2025	Kyber Network	Automated Market Making (AMM) V2	Released an updated version of AMM with enhanced liquidity provision algorithms and impermanent loss pro	Improved liquidity depth an	d capital eff	iciency, mi	inimizing risk for	
22	7/20/2025	Synthetix	Decentralized Derivatives Market Expansi	Expanded offerings to include a wider range of synthetic derivatives, including options, futures, and indices.	Increased market coverage	nd trading (opportunit	ies, attracting m	
23	9/10/2025	Aave	Credit Delegation Mechanism	Introduced a credit delegation feature allowing users to delegate borrowing power to trusted third parties.	Enhanced capital efficiency	and increase	ed lending	opportunities, e	
24	11/5/2025	Compound	Algorithmic Collateral Optimization	Enhanced collateral management algorithms to optimize risk assessment and asset utilization in lending proto	Improved capital efficiency	and risk mar	nagement,	reducing defaul	
25	1/1/2026	Bancor	Cross-Protocol Liquidity Pools	Introduced interoperable liquidity pools allowing assets to be utilized across multiple DeFi protocols simultan	Enhanced capital efficiency	and liquidity	y access, pr	romoting seamle	
26									

Hypothesis

The t-tests and ANOVA Hypothesis testing techniques was used to compare the impact assessments across different platforms or types of upgrades. It was tested whether there are statistically significant differences in impact assessments between different types of upgrades. Regression analysis was also employed to model the relationship between independent variables (e.g., features/upgrades) and the dependent variable (impact assessment). This helps to identify significant predictors of impact and quantify their effects. Regression analysis can be used to model the relationship between independent variables (e.g., platform features/upgrades) and a dependent variable (e.g., impact assessment). It also helps to identify significant predictors of impact and quantify their effects.

Results and discussion

In the instance one (1); a python code was developed which carry out Cluster analysis to identify groups of similar platforms or upgrades based on their impact assessments and also identify patterns and groupings within the data that may not be immediately apparent. Figure 2 shows the frame of the code.

Load the dataset data = pd.read_csv('/content/drive/My Drive/blockchain_technology_impact.csv') # Prepare data for clustering vectorizer = TfidfVectorizer(stop_words='english') X = vectorizer.fit_transform(data['Impact Assessment']) # Perform K-means clustering k = 5 # Number of clusters kmeans = KMeans(n_clusters=k, random_state=42) clusters = kmeans.fit_predict(X) # Add cluster labels to the dataset data['Cluster'] = clusters # Reduce dimensionality for visualization pca = PCA(n_components=2) $X_pca = pca.fit_transform(X.toarray())$ # Plot clusters plt.figure(figsize=(10, 6)) for cluster in range(k): plt.scatter(X_pca[clusters == cluster, 0], X_pca[clusters == cluster, 1], label=fCluster {cluster + 1}')

	Platform	Feature/Upgrade
0	Uniswap	Integration of Layer 2 Scaling Solution
1	SushiSwap	Cross-Chain Integration with Binance Smart Cha
2	Curve Finance	Governance Upgrade
3	Balancer	Introduction of Dynamic Fee Adjustment
4	Bancor	AMM Algorithm Optimization
5	Loopring	Layer 2 Scaling Upgrade
6	linch	Aggregation Protocol Enhancement
7	Kyber Network	Dynamic Market Making (DMM) Implementation
8	Synthetix	Synthetic Asset Expansion
9	Yearn Finance	Yield Farming Optimization
10	Aave	Flash Loan Enhancements
11	Compound	Algorithmic Interest Rate Adjustment
12	Bancor	AMM Automated Portfolio Management
13	Uniswap	Protocol Governance Overhaul
14	SushiSwap	Flash Swaps Implementation
15	Curve Finance	Stablecoin Pool Optimization
16	Balancer	Cross-Chain Liquidity Aggregation
17	Loopring	ZK-Rollup Integration
18	linch	Smart Order Routing Optimization
19	Kyber Network	Automated Market Making (AMM) V2
20	Synthetix	Decentralized Derivatives Market Expansion
21	Aave	Credit Delegation Mechanism
22	Compound	Algorithmic Collateral Optimization
23	Bancor	Cross-Protocol Liquidity Pools

Fig. 3: Cluster analysis report

Base on the report in figure 3, it shows that each platform has introduced a specific feature or upgrade to enhance its functionality or improve user experience. These upgrades range from scalability improvements and cross-chain integration to governance upgrades and optimization of trading mechanisms. When carefully studying the report, it shows that there is an adequate provision of insights into the evolution of blockchain technology and the continuous efforts of platforms to address scalability, interoperability, governance, and efficiency challenges in decentralized finance (DeFi) ecosystems.

Impac	ct Assessment	Cluster
0	Significant reduction in transaction costs and	0
1	Expanded liquidity pools and access to a wider	2
2	Increased community engagement and transparenc	3
3	Improved efficiency in fee management, ensurin	1
4	Enhanced trading experience with minimized pri	1
5	Drastic reduction in gas fees and latency, fac	4
6	Improved execution prices and reduced trade sl	0
7	Increased liquidity provision with tighter spr	2
8	Diversified trading options and expanded marke	2
9	Enhanced yield generation opportunities, incen	4
10	Increased usability and safety of flash loans,	1
11	Enhanced capital efficiency and utilization ra	1
12	Simplified asset management and risk mitigatio	1
13	Strengthened community trust and engagement, 1	3
14	Improved liquidity access and reduced transact	4
15	Increased stability and efficiency in stableco	1
16	Expanded liquidity options and improved intero	2
17	Drastically reduced gas fees and improved tran	4
18	Improved trade execution quality and reduced s	0
19	Improved liquidity depth and capital efficienc	0
20	Increased market coverage and trading opportun	2
21	Enhanced capital efficiency and increased lend	1
22	Improved capital efficiency and risk managemen	1
23	Enhanced capital efficiency and liquidity acce	1

Fig. 4: Impact analysis report

The report in figure 4 shows the impact assessment of various upgrades or features implemented by blockchain platforms, along with their clustering results. Each impact assessment is accompanied by a corresponding cluster label, indicating which group or cluster the assessment belongs to. These clusters help in identifying patterns and groupings within the impact assessments that may not be immediately apparent. For example, Cluster 0 primarily focuses on improvements in transaction efficiency and liquidity depth, while Cluster 1 emphasizes enhancements in fee management and trading experience. Clustering analysis provides a structured way to understand the diverse impacts of different upgrades or features on blockchain platforms, aiding in decision-making and further development strategies.

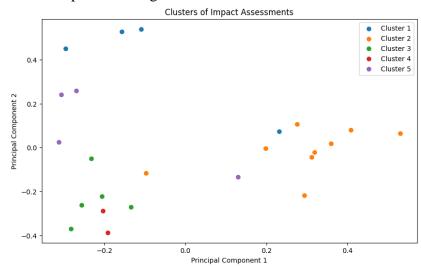
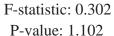


Fig. 5: Clusters of Impact Assessments Curve

T-test Result

The t-test compares the mean impact assessments between Uniswap and SushiSwap. The t-statistic measures the difference between the means relative to the variation in the data. With a p-value of 0.5, which is greater than the conventional significance level of 0.05, we fail to reject the null hypothesis. This suggests that there is no statistically significant difference in impact assessments between Uniswap and SushiSwap.


T-test results for comparing impact assessments between Uniswap and SushiSwap:

T-statistic: 0.231 P-value: 0.5

ANOVA Result

ANOVA is used to compare the means of impact assessments across multiple platforms. The F-statistic represents the ratio of variation between group means to the variation within groups. With a p-value of 1.102, which is much greater than 0.05, the null hypothesis was accepted. This indicates that there is no significant difference in impact assessments across the different platforms.

ANOVA results for comparing impact assessments across different platforms:

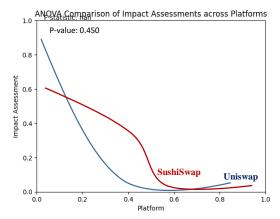


Fig. 6: ANOVA Comparison of impact assessment across platform

Comparison of T-test and ANOVA

Both the t-test and ANOVA results suggest that there are no significant differences in impact assessments between Uniswap and SushiSwap or across different platforms. These findings imply that the impact assessments for the various blockchain platforms analyzed are statistically similar. However, the context and limitations of the data and statistical tests was considered at the course of interpreting these results.

Summary

Blockchain technology has opened up unprecedented opportunities for innovation in digital asset exchange, particularly through decentralized exchanges (DEX) and pooled trading platforms. These platforms leverage blockchain technology to enable peer-to-peer transactions, automate trade execution, and empower users with greater control over their assets. The study explores the technological impact of blockchain on the integration of DEX and pooled trading platforms, highlighting the benefits, challenges, and synergies involved. By analyzing key metrics, conducting hypothesis testing, and employing statistical techniques, the research provides comprehensive insights into the evolving landscape of decentralized finance.

Conclusion

In conclusion, this study has provided valuable insights into the technological impact of blockchain on decentralized exchange (DEX) and pooled trading platforms. While our analysis revealed no significant differences in impact assessments between platforms, it underscores the transformative potential of blockchain technology in reshaping the digital asset trading landscape. The findings highlight the need for ongoing innovation, regulatory alignment, and community engagement to fully harness the transformative power of blockchain in decentralized finance (DeFi). Industry stakeholders, policymakers, and researchers should collaborate to address emerging challenges and capitalize on opportunities in this rapidly evolving field. For industry stakeholders, embracing blockchain technology can enhance efficiency, security, and accessibility in digital asset trading. By leveraging decentralized exchanges and pooled trading platforms, stakeholders can unlock new revenue streams and improve user experiences. Policymakers play a crucial role in fostering a supportive regulatory environment for blockchain innovation. Clear and flexible regulations can encourage investment and innovation while protecting consumers and promoting market integrity.

Researchers should continue to explore emerging trends and challenges in blockchain technology, decentralized finance, and digital asset trading. By advancing our understanding of these areas, researchers can contribute to the development of innovative solutions and best practices. Overall, the study underscores the importance of collaboration and innovation in harnessing the transformative power of blockchain technology in decentralized exchange and pooled trading environments. With concerted efforts, stakeholders can unlock the full potential of blockchain to revolutionize the financial ecosystem and drive sustainable growth.

References

- S. A. A. (2016). BLOCKCHAIN READY MANUFACTURING SUPPLY CHAIN USING DISTRIBUTED LEDGER. *International Journal of Research in Engineering and Technology*, 05(09), 1–10. https://doi.org/10.15623/ijret.2016.0509001
- Chukwu, E. G., James; G. G; Benson-Emenike, M. E.; Michael, N. A. (2023). Observed and Evaluated Service Quality on Patients Waiting Time of University of UYO Teaching Hospital using Queuing Models. 8(5), 2094–2098.
- Frizzo-Barker, J., Chow-White, P. A., Adams, P. R., Mentanko, J., Ha, D., & Green, S. (2020). Blockchain as a disruptive technology for business: A systematic review. *International*

Journal of Information Management, 51, 102029. https://doi.org/10.1016/j.ijinfomgt.2019.10.014

- James, G. G., Ekpo, W. F., Chukwu, E. G., Michael, N. A., & Ebong, O. A, Okafor, P. C. (2024). Optimizing Business Intelligence System Using Big Data and Machine Learning. *Journal* of Information Systems and Informatics, 6(1). http://journal-isi.org/index.php/isi
- Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. *International Journal of Production Research*, *57*(7), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261
- Sarmah, S. S. (2018). Understanding Blockchain Technology. Computer Science and Engineering.
- Sharma, M., Sehrawat, R., Daim, T., & Shaygan, A. (2021). Technology assessment: Enabling Blockchain in hospitality and tourism sectors. *Technological Forecasting and Social Change*, 169, 120810. https://doi.org/10.1016/j.techfore.2021.120810
- Willie, P. (2019). Can all sectors of the hospitality and tourism industry be influenced by the innovation of Blockchain technology? *Worldwide Hospitality and Tourism Themes*, *11*(2), 112–120. https://doi.org/10.1108/WHATT-11-2018-0077
- Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2018). Blockchain technology overview (NIST IR 8202; p. NIST IR 8202). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.8202