

AAJRSR VOL. 4 (1) 2024 95

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Innovation and Standard Adoption of Software Development in a Global

Setting

Nseabasi P. Essien

University of Uyo

Aniekan Godwin Effiong

University of Uyo

Abstract

Software development entails a methodological process that begins with requirements

analysis and ranges through deployment and maintenance. It encompasses a range of

activities that translate user needs and requirements into functional software products.

This opinion paper delves into the transformative advancements in software development

and the evolution of software development methodologies, emphasizing the innovative

transformations from traditional models to contemporary practices and their widespread

adoption as global standards. It examines the transition from rigid, linear approaches like

the Waterfall model to more dynamic, iterative frameworks such as Agile, DevOps, and

continuous integration/continuous deployment (CI/CD). The paper analyzes how these

innovations address the limitations of former methodologies, enhancing flexibility,

collaboration, and efficiency in software development. It also evaluates the factors driving

the global acceptance of these modern approaches, including industry demands for faster

delivery, higher quality, and greater adaptability to change. Through a comprehensive

review of case studies and industry reports, the paper provides insights into the benefits

and challenges of implementing these innovations on a global scale. It concludes with

recommendations for future research and practices to further refine and standardize these

methodologies, ensuring their continued relevance and effectiveness in an ever-evolving

technological landscape.

Keywords: innovation, software development, global setting, adoption

Introduction

Software development is a dynamic and continuously evolving field that plays a critical

role in the advancement of technology and business operations globally. Traditionally,

software development has been structured around sequential and linear methodologies,

such as the Waterfall model, which segments the process into discrete stages completed in

a specific order. While these traditional approaches have laid the foundational framework

for systematic software creation, they are often criticized for their rigidity, prolonged

AAJRSR VOL. 4 (1) 2024 96

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

development cycles, and limited adaptability to change. In recent decades, the software

development landscape has undergone significant transformations, driven by the need for

greater agility, faster time-to-market, and enhanced collaboration among development

teams. These demands have led to the emergence of innovative methodologies, including

Agile, DevOps, and continuous integration/continuous deployment (CI/CD). Agile

methodologies emphasize iterative development, where requirements and solutions evolve

through collaborative efforts of cross-functional teams. DevOps extends Agile principles

by integrating development and operations to streamline the software delivery pipeline,

fostering a culture of continuous improvement and automation (Mohammed, 2020).

Innovations in software development, derived from traditional models, represent a pivotal

shift in how software is conceptualized, created, and delivered. While traditional

methodologies like the Waterfall and V-Model provided a structured approach that

emphasized thorough planning and sequential progress, they often faltered in the face of

changing requirements and dynamic market conditions. The emergence of modern

methodologies, such as Agile, DevOps, and continuous integration/continuous deployment

(CI/CD), addresses these limitations by fostering greater flexibility, enhanced

collaboration, and continuous improvement (Ska, 2019).

These innovations are not mere enhancements of traditional models but transformative

approaches that redefine the very ethos of software development. They prioritize customer

satisfaction, continuous feedback, and adaptability, making them indispensable in today’s

fast-paced, technology-driven world. As such, the shift from traditional to modern

methodologies is not just an evolution; it is a fundamental reimagining of how software

can and should be developed to meet the ever-evolving needs of businesses and users alike.

Background

Software development has been a cornerstone of technological advancement for decades,

providing the foundation upon which modern applications, systems, and services are built.

AAJRSR VOL. 4 (1) 2024 97

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Traditional software development models, such as the Waterfall, V-Model, Spiral, and

Incremental models, established the initial frameworks for structured and systematic

software creation. These models emphasized thorough planning, detailed documentation,

and sequential progress, ensuring that each phase of development was meticulously

executed before moving on to the next. While these methodologies provided much-needed

structure, they also exhibited significant limitations, particularly in terms of rigidity,

lengthy development cycles, and difficulty adapting to changing requirements and market

conditions.

As the demand for more flexible, efficient, and responsive software development processes

grew, innovative methodologies began to emerge. Agile development, with its iterative

cycles and emphasis on collaboration and adaptability, quickly gained prominence.

DevOps, which integrates development and operations to streamline workflows and foster

a culture of continuous improvement, further transformed the landscape. Continuous

integration/continuous deployment (CI/CD) practices have also become essential, enabling

rapid and reliable software delivery through automated testing and deployment pipelines.

These modern methodologies have not only addressed the shortcomings of traditional

models but have also set new standards for software development practices. Their global

adoption across various industries and regions underscores their effectiveness and the

critical role they play in driving technological innovation.

Purpose

The purpose of this paper is to explore and evaluate the innovations in software

development methodologies that have emerged from traditional models, and to examine

their adoption as global standards. By juxtaposing traditional and modern approaches, this

paper aims to provide a comprehensive understanding of the evolution in software

development practices. It seeks to highlight the benefits and challenges associated with

AAJRSR VOL. 4 (1) 2024 98

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

these innovations, offering insights into how they enhance flexibility, collaboration, and

efficiency in software development. Furthermore, this paper will investigate the factors

driving the widespread adoption of these modern methodologies, including market

demands, technological advancements, and regulatory requirements. Through a review of

literature, case studies, and industry reports, the paper will present a nuanced analysis of

regional and industry-specific adoption trends, identifying both enablers and barriers to

successful implementation.

Ultimately, this paper aims to inform practitioners, researchers, and policymakers about

the current state of software development methodologies and provide recommendations for

further refinement and standardization. By understanding the innovations and their impact,

stakeholders can better navigate the complexities of software development and contribute

to the ongoing improvement of practices that meet the ever-evolving needs of the global

market.

Software Development

Software development is the process of designing, developing, testing, and maintaining

software applications. Software development is the process used to conceive, specify,

design, program, document, test, and bug fix in order to create and

maintain applications, frameworks, or other software components. Software development

involves writing and maintaining the source code, but in a broader sense, it includes all

processes from the conception of the desired software through the final manifestation,

typically in a planned and structured process often overlapping with software engineering.

Software development also includes research, new development, prototyping,

modification, reuse, re-engineering, maintenance, or any other activities that result in

software products (Yu, 2018).

Basically, software development deploys the following stages:

https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_engineering

AAJRSR VOL. 4 (1) 2024 99

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

1. Requirement Analysis: This step onwards the software development team works to

carry on the project. The team holds discussions with various stakeholders from problem

domain and tries to bring out as much information as possible on their requirements. The

requirements are contemplated and segregated into user requirements, system requirements

and functional requirements. The requirements are collected using a number of practices

as given - studying the existing or obsolete system and software, conducting interviews of

users and developers, referring to the database or collecting answers from the

questionnaires (Acharya & Sahu 2020).

2. Planning: After requirement gathering, the team comes up with a rough plan of

software process. At this step the team analyzes if a software can be made to fulfill all

requirements of the user and if there is any possibility of software being no more useful. It

is found out, if the project is financially, practically and technologically feasible for the

organization to take up. There are many algorithms available, which help the developers to

conclude the feasibility of a software project (Ikbak, 2023). Most of the documents needed

during other phases of the software development are made here. These may include an

Acquisition Plan, Concept of Operations, and Project Management Plan, but there are many

more that may be relevant to different projects. A summary is usually presented to

stakeholders at this point, and a detailed plan is presented and reviewed.

3. System Analysis and Design: At this step the developers decide a roadmap of their

plan and try to bring up the best software model suitable for the project. System analysis

includes Understanding of software product limitations, learning system related problems

or changes to be done in existing systems beforehand, identifying and addressing the

impact of project on organization and personnel etc. The project team analyzes the scope

of the project and plans the schedule and resources accordingly (Acharya & Sahu, n.d.).

Next is to bring down whole knowledge of requirements and analysis on the desk and

design the software product. The inputs from users and information gathered in

requirement gathering phase are the inputs of this step. The output of this step comes in the

AAJRSR VOL. 4 (1) 2024 100

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

form of two designs; logical design and physical design. Engineers produce meta-data and

data dictionaries, logical diagrams, data-flow diagrams and in some cases pseudo codes. In

the Design phase, detailed requirements are to be turned into detailed specifications that

engineers will use during the Development phase. These specifications should address how

functional, physical, interface, and data requirements are to be met in the system. This is

usually done iteratively through the entire life cycle process. Designs may include database

designs and user interface designs

4. Coding: This step is also known as programming phase. The implementation of

software design starts in terms of writing program code in the suitable programming

language and developing error-free executable programs efficiently. This stage is otherwise

called the development stage which is to convert designs from the Design phase into a

functional system. This does not only include the software that should be written, but also

the infrastructure that should be set in place. These infrastructures may include hardware,

software, and communication systems that are required for the functionality of the overall

system. Besides the code that is written, some deliverables expected as a result of this phase

include a Contingency Plan that directs the client what to do in case of emergency; a

Software Development document which illustrates test cases and results, how the

components work, and approvals; the test files and data; and an Integration Document

which illustrates how the software and hardware components work together.

5. Testing: The Integration and Testing phase aims to determine if the requirements specified

in the specifications document are met. Three different types of testing are ideal to include

in this phase: integration testing of subsystems, security testing, user testing or acceptance

testing, and unit testing. Each of these types of tests serve a different purpose and help all

stakeholders determine flaws in the system prior to deployment. Unit testing, which tests

small portions of code and is traditionally done during the development phase. Several

analysis reports may be produced from these tests and should presented to stakeholders

AAJRSR VOL. 4 (1) 2024 101

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

before moving on to the implementation phase. During this meeting, details on how

implementation should take place are imperative to address.

6. Maintenance: this is the stage of software development that aids in updating, changing,

and upgrading software to meet customer needs is software maintenance. After the program

is released or launched, maintenance is carried out for a number of reasons, such as

enhancing the program generally, fixing errors or bugs, boosting performance, and more.

In software engineering parlance, software maintenance is the process of making changes

to a software product after it has been deployed in order to fix bugs, enhance performance,

or add new features (Gadhavi, 2023)

7. Documentation: Software documentation gives all parties involved in the development,

implementation, and utilization of a software program information about the program. The

development process is guided and documented. It also helps with routine chores like

installation and troubleshooting. Good documentation introduces users to the product and

highlights its features. It can be a major factor in encouraging user acceptance. Because it

empowers users to solve problems on their own, documentation can also lighten the load

on support personnel. Throughout the course of the software development lifecycle,

software documentation may be updated and maintained in real time. Through its use and

the dialogue it fosters with users, developers can learn about issues users are having with

the program and what features they would like to see added. By responding with software

upgrades, developers may enhance user experience and customer happiness.

TRADITIONAL SOFTWARE DEVELOPMENT MODELS

Waterfall

AAJRSR VOL. 4 (1) 2024 102

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

The Waterfall Model is a sequential design process that is frequently used in software

development processes, where progress is seen as flowing steadily downward (like a

waterfall) through several phases. The Waterfall Model is one of the oldest and most

traditional software development methodologies (University of Novi Sad - Faculty of

Economics, Segedinski put 9-11, 24000 Subotica et al., 2010).

The methodical approach of the Waterfall Model makes it perfect for projects where

extensive documentation is necessary and where large changes in requirements are not

anticipated. Its rigidity, meanwhile, may be a disadvantage in highly dynamic contexts

where iterative development and flexibility are necessary.

Limitations

Inflexibility: The rigid nature of the Waterfall Model makes it difficult to accommodate

changes once the project has begun. Any significant changes may require revisiting and

modifying completed phases, which can be costly and time-consuming.

Poor Adaptability to Change: The model is not suitable for projects where requirements

are expected to evolve or are not well-understood from the beginning. It does not handle

changes easily, making it less effective in dynamic environments.

Late Testing: Testing is performed only after the development phase is complete. This

can lead to the late discovery of critical issues, making them harder and more expensive

to fix.

AAJRSR VOL. 4 (1) 2024 103

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

High Risk and Uncertainty: The model assumes that all requirements can be gathered

upfront, which is rarely the case. Misunderstandings or changes in requirements can lead

to significant issues down the line.

Limited User Involvement: Users are involved mainly during the requirements

gathering and final review stages, which can lead to a disconnect between the delivered

product and user expectations.

Long Development Cycle: The linear nature often results in a longer time to market, as

no phase begins until the previous one is completed. This can be problematic for projects

requiring quick delivery or iterative improvements.

V-Model

One of the more conventional approaches for software development is the Verification

and Validation Model (V-Model), which is an extension of the Waterfall Model. It

highlights how the development and testing phases relate to one another in a parallel

fashion (Regulwar et al., 2021)

AAJRSR VOL. 4 (1) 2024 104

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Characteristics of the V-Model

Verification and Validation: The V-Model is named for its V-shape, which visually

represents the relationship between each development phase and its corresponding testing

phase. Verification involves checking that the system meets its specified requirements,

while validation involves ensuring the system meets the needs of the user.

Sequential and Parallel Processes: Similar to the Waterfall Model, the V-Model is

sequential. However, it emphasizes parallel processes where each development activity has

a corresponding testing activity.

Documentation: Extensive documentation is produced at each phase. Requirements,

design, and test documents are critical deliverables.

Limitations

Inflexibility: The rigid nature of the V-Model makes it difficult to accommodate changes

once the process is underway.

Late Testing Issues: Although testing phases are defined early, the actual testing might

still occur late in the lifecycle, potentially leading to late discovery of major issues.

Risky Assumptions: Assumes that all requirements can be gathered upfront and remain

unchanged, which is often not the case.

High Documentation Overhead: The emphasis on documentation can lead to significant

overhead and increased project duration.

Limited User Involvement: Users are typically involved only at the beginning

(requirements) and end (acceptance testing), which can result in a final product that may

not fully meet user needs or expectations.

AAJRSR VOL. 4 (1) 2024 105

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Spiral Model

A classic software development paradigm that incorporates aspects of waterfall and

iterative approaches is the spiral model. It places a strong emphasis on risk management

and iterative improvement through spirals—repeated cycles—that include planning, risk

analysis, engineering, and evaluation. Large-scale, intricate, and risky projects are best

suited for this paradigm, which Barry Boehm introduced in 1986.

The spiral model imparts the idea of iterative development with a structured, supervised

waterfall component. This spiral model is composed of a succeeding model, which is a

waterfall model with a significant emphasis on risk analysis, and a recurrent process.

AAJRSR VOL. 4 (1) 2024 106

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

permits the release of more products or filters for each processor. (Dhruv, Labdhi & Kunj,

2021).

Limitations

Complexity: The model can be complex to manage and implement, particularly for

smaller projects with limited resources.

Costly and Time-Consuming: The iterative cycles and extensive risk management

activities can lead to higher costs and longer project timelines.

Requires Expertise: Effective risk analysis and management require specialized skills

and experience, which may not be readily available.

Difficult to Define Milestones: The iterative nature can make it challenging to define

clear milestones and deliverables, complicating project tracking and reporting.

INNOVATIVE SOFTWARE DEVELOPMENT METHODOLOGIES

Modern software projects require more flexibility, faster delivery, and better collaboration.

To meet these needs, innovative software development approaches have emerged from old

models like Waterfall, V-Model, and Spiral. These approaches are highly suitable for the

dynamic and complicated software environments of today because they include iterative

development, continuous feedback, and change adaptability. Traditional models have

given way to innovative software development approaches in response to the demands of

contemporary software projects. These innovative approaches include:

• Scaled Agile Framework (SAFe)

• Feature-Driven Development (FDD)

• Extreme Programming (XP)

• DevOps

AAJRSR VOL. 4 (1) 2024 107

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Scaled Agile Framework (SAFe)

A recent solution to the problems traditional software development models sometimes

encounter is the Scaled Agile Framework (SAFe), which expands agile practices to larger

businesses. The incorporation of innovative techniques from conventional software

development paradigms led to the creation of the Scaled Agile Framework. The

innovative aspects of the conventional software development approaches that lead to the

creation of the Scaled Agile Framework comprise the following as shown in the table

APPROACHES CONVENTIONAL

MODEL

SCALED AGILE FRAMEWORK (SAFE)

Scalability

Traditional methodologies

like Waterfall struggle

with scaling due to their

linear, sequential nature,

leading to long

development cycles and

difficulty in adapting to

change.

Designed to scale agile principles across large

enterprises, SAFe provides a structured

approach that includes roles, responsibilities,

and artifacts for team, program, and portfolio

levels. This allows for agility and

coordination across multiple teams

Flexibility and

Responsiveness

Waterfall and similar

methodologies are rigid,

with a fixed sequence of

phases (requirements,

design, implementation,

testing, deployment).

Changes late in the

process are costly and

difficult.

Emphasizes iterative development and

frequent feedback loops. This enables teams

to adapt to changes quickly and continuously

improve, fostering innovation and

responsiveness to customer needs.

Continuous

Delivery and

Integration

Often lacks mechanisms

for continuous integration

and delivery, leading to

long periods without

customer feedback and

potential misalignment

with market needs.

Incorporates practices like Continuous

Integration (CI) and Continuous Deployment

(CD), ensuring that incremental changes are

integrated, tested, and delivered regularly.

This reduces time to market and increases

product quality.

AAJRSR VOL. 4 (1) 2024 108

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Alignment and

Collaboration

Siloed departments and

hierarchical structures can

lead to

miscommunication,

misalignment, and

inefficiencies

Promotes alignment across all levels of the

organization. It includes mechanisms like the

Program Increment (PI) planning, which

aligns teams on a shared vision and goals,

enhancing cross-functional collaboration and

transparency.

Lean-Agile

Leadership

Often characterized by

command-and-control

management styles, which

can stifle creativity and

responsiveness.

Advocates for lean-agile leadership that

empowers teams, encourages innovation, and

fosters a culture of continuous improvement.

Leaders support teams by removing

impediments and enabling autonomy.

Metrics and

Feedback

Loops

Often relies on lagging

metrics that do not provide

real-time insights into

project health.

Uses leading and lagging indicators to

measure progress, quality, and value delivery.

Regular retrospectives and Inspect & Adapt

workshops provide continuous feedback,

enabling teams to improve their processes and

outcomes

 SAFe innovates traditional software development by scaling agile principles across the

enterprise, promoting flexibility, continuous delivery, alignment, lean-agile leadership,

customer centricity, and effective use of metrics and feedback loops. This enables large

organizations to be more responsive, collaborative, and innovative in delivering value to

their customers (Beecham et al., 2021)

Feature-Driven Development (FDD)

An agile methodology called "Feature-Driven Development" (FDD) offers several

innovations over traditional software development models and focuses on producing

concrete, functional software features in an organized, iterative fashion (Alsaqqa et al.,

2020). The following techniques offers FDD a significant shift from the conventional

software development models

APPROACHES CONVENTIONAL MODEL FEATURE-CENTRIC APPROACH

(FDD)

AAJRSR VOL. 4 (1) 2024 109

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Feature-Centric

Approach

Typically follows a phase-driven

approach where the project is

divided into distinct stages such as

requirements, design,

implementation, testing, and

deployment. This can lead to long

delivery cycles.

Emphasizes building software by

focusing on features—small, client-

valued functions that can be developed

in short iterations. This ensures

continuous delivery of working

software and keeps the development

process closely aligned with user needs.

Iterative and

Incremental

Development

Follows a linear, sequential

process where each phase must be

completed before the next begins,

often leading to delayed feedback

and issues detected late in the

development cycle.

Uses an iterative and incremental

approach, breaking the project into

manageable chunks (features) that are

designed, built, and tested in short

cycles. This allows for frequent

feedback and early detection of issues.

Domain

Modeling

Domain knowledge is often

scattered and may not be formally

captured, leading to

inconsistencies and

misunderstandings.

Starts with domain modeling, where

key domain objects and their

relationships are identified and mapped.

This provides a clear, shared

understanding of the system and its

context, facilitating better

communication and design decisions.

Feature Lists and

Planning

Project planning is often rigid,

with detailed specifications and

plans created upfront, which can

be inflexible and difficult to adapt

as the project evolves.

Develops a comprehensive feature list,

which acts as a living document that

evolves as the project progresses.

Features are prioritized and scheduled,

providing a flexible and adaptive

planning process.

Small, Cross-

Functional

Teams

Development teams are often

large and divided by function

(e.g., separate teams for

development, testing, and design),

which can hinder collaboration

and slow down the development

process.

Utilizes small, cross-functional teams

that work on developing features end-

to-end. This enhances collaboration,

speeds up development, and improves

quality by ensuring that all aspects of a

feature are considered together.

Regular Builds

and Continuous

Integration

Integration typically occurs at the

end of the development cycle,

which can lead to significant

integration issues and delays.

Advocates for regular builds and

continuous integration, ensuring that

the codebase is always in a working

state. This reduces integration risks and

allows for early detection of issues.

Inspections and

Quality

Assurance

Quality assurance is often a

separate phase conducted after

development is complete, which

Integrates inspections and quality

checks into the development process,

ensuring that features are reviewed and

AAJRSR VOL. 4 (1) 2024 110

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

can lead to late discovery of

defects.

tested continuously. This promotes

higher quality and reduces the risk of

defects.

Focus on Results Success is often measured by

adherence to plan and completion

of tasks, which may not

necessarily correlate with

delivering value to the customer.

Measures success by the delivery of

working, customer-valued features.

This results-oriented approach ensures

that development efforts are directly

tied to delivering business value.

By emphasizing the iterative and incremental delivery of modest, client-valued features,

Feature-Driven Development transforms traditional software development. Higher quality

software, quicker delivery, and greater customer alignment result from its emphasis on

domain modeling, flexible planning, cross-functional teams, frequent builds, continuous

integration, and integrated quality assurance (Zahid Nawaz et al., 2017)

Extreme Programing (XP)

The agile software development methodology known as Extreme Programming (XP)

incorporates a number of cutting-edge techniques and ideas to enhance software quality

and adaptability to shifting client needs (Yadav, 2019). Here is how XP innovates from

traditional software development models:

APPROACHES CONVENTIONAL MODEL EXTRME PROGRAMING (XP)

Customer

Collaboration

and Feedback

Typically involves gathering

detailed requirements at the

beginning of the project, often

with limited customer

involvement until the end.

Encourages constant customer

collaboration. Customers are part of the

development team, providing continuous

feedback, which ensures that the

software meets their needs and adapts to

changes quickly.

Frequent

Releases

Follows a long development

cycle with infrequent releases,

often resulting in delayed

feedback and a high risk of the

final product not meeting

customer expectations.

Emphasizes short development cycles

(iterations) with frequent releases of

functional software. This allows for

regular feedback and adjustments,

ensuring that the product evolves in

alignment with customer needs.

AAJRSR VOL. 4 (1) 2024 111

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Test-Driven

Development

(TDD)

Testing is often a separate phase

conducted after the development

phase, which can lead to late

discovery of defects and higher

costs of fixing issues.

Implements Test-Driven Development

(TDD), where developers write

automated tests before writing the actual

code. This ensures that the code is tested

continuously and that defects are

identified and fixed early in the

development process.

Pair

Programming

Typically involves individual

developers working on separate

tasks, which can lead to isolated

knowledge and inconsistent

code quality.

Introduces pair programming, where two

developers work together at one

workstation. This practice improves

code quality, facilitates knowledge

sharing, and ensures that all code is

reviewed continuously.

Continuous

Integration

Integration is often done at the

end of the development cycle,

leading to integration issues and

delays.

Advocates for continuous integration,

where code is integrated and tested

frequently (multiple times a day). This

practice reduces integration risks and

ensures that the software is always in a

deployable state.

Refactoring Code quality and design issues

are often addressed only when

they become significant

problems, leading to technical

debt.

Promotes continuous refactoring, where

the design and structure of the code are

improved regularly. This practice keeps

the codebase clean, maintainable, and

adaptable to change.

Collective Code

Ownership

Code ownership is usually

assigned to individual

developers or teams, which can

lead to silos and difficulty in

maintaining and enhancing the

code.

Implements collective code ownership,

where everyone on the team can

contribute to any part of the codebase.

This practice improves code quality,

facilitates collaboration, and reduces

bottlenecks.

Extreme Programming transforms traditional software development through the

encouragement of rapid releases, thorough testing, ongoing customer participation, and

codebase enhancement. Code quality, team responsiveness, and productivity are increased

by using techniques like pair programming, continuous integration, collaborative code

ownership, and sustainable pace. The development process is now more customer-focused,

nimble, and effective thanks to these advances (T. Goto, K. Tsuchida and T. Nishino,.

2014)

AAJRSR VOL. 4 (1) 2024 112

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

DevOps

DevOps integrates and automates the work of IT operations and software development

teams, marking a substantial shift from traditional software development approaches.

Below is a table showing how DevOps improves upon traditional models

APPROACHES CONVENTIONAL

MODEL

DevOps

Integration of

Development

and Operations

Development and operations

teams work in silos, often

leading to communication

gaps, inefficiencies, and

conflicts, especially during

the deployment phase.

Merges development (Dev) and operations

(Ops) into a single, integrated approach.

This fosters better collaboration, reduces

friction, and ensures that both teams are

aligned towards common goals.

Continuous

Integration and

Continuous

Deployment

(CI/CD)

Code integration and

deployment are typically

manual processes that occur

infrequently, leading to long

release cycles and increased

chances of errors.

Implements Continuous Integration (CI)

and Continuous Deployment (CD)

pipelines, automating the integration,

testing, and deployment processes. This

enables rapid, reliable, and consistent

delivery of software.

Automation Many processes, such as

testing, integration, and

deployment, are manual,

time-consuming, and error-

prone.

Emphasizes automation of repetitive tasks,

including code integration, testing,

configuration management, and

deployment. Automation reduces human

error, increases efficiency, and allows

teams to focus on higher-value work.

Infrastructure as

Code (IaC)

Infrastructure is typically

managed manually, leading

to inconsistencies,

configuration drift, and

difficulty in scaling.

Utilizes Infrastructure as Code (IaC),

where infrastructure configuration is

managed through code and version control.

This ensures consistency, repeatability, and

scalability of infrastructure deployments.

Continuous

Monitoring and

Feedback

Monitoring is often an

afterthought, implemented

only after the system is in

production, which can lead

to delayed detection of

issues

Monitoring is often an afterthought,

implemented only after the system is in

production, which can lead to delayed

detection of issues

Collaboration

and

Communication

Communication between

development and operations

teams is limited, often

resulting in misalignment

and misunderstandings.

Promotes a culture of open communication

and collaboration, often facilitated by

collaborative tools and practices such as

daily stand-ups, shared dashboards, and

integrated workflows.

AAJRSR VOL. 4 (1) 2024 113

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Agility and

Responsiveness

Long release cycles and

rigid processes make it

difficult to respond quickly

to changes in market

demands or customer

feedback.

Enhances agility by enabling rapid and

frequent releases, allowing teams to

quickly respond to changes, incorporate

feedback, and deliver value continuously.

Scalability and

Reliability

Scaling applications and

infrastructure can be

complex and error-prone,

often requiring significant

manual intervention.

Uses automated scaling and reliable

deployment practices to ensure that

applications and infrastructure can scale

efficiently and reliably, meeting demand

without compromising performance.

By dismantling organizational divisions between development and operations, automating

procedures, and encouraging a culture of shared accountability, cooperation, and

continuous improvement, DevOps transforms traditional software development. By

enhancing efficiency, reliability, and agility, practices like continuous

integration/continuous development (CI/CD), infrastructure as code, automatic scaling,

and continuous monitoring enable organizations to produce high-quality software more

quickly and reliably (Harshali Rohit Kadaskar, 2024).

BENEFITS OF THE INNOVATIONS OVER THE TRADITIONAL SOFTWARE

DEVELOPMENT

In comparison to traditional models, innovative software development methodologies

provide a number of advantages, including improved flexibility, speed, collaboration,

quality, customer satisfaction, transparency, risk management, team morale, resource

utilization, continuous improvement, and scalability. These benefits result in more

productive projects, better-quality end products, and improved alignment with client and

business requirements.

CASE STUDIES AND INDUSTRY EXAMPLES OF SUCCESSFUL

IMPLEMENTATIONS OF THE INNOVATED APPROACHES

AAJRSR VOL. 4 (1) 2024 114

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Company
Industry

Agile

Framework/

Methodology

Benefits
Details

Spotify

Music

Streamin

g

Customized

Agile

Increased

innovation,

improved

team

autonomy

and

alignment

Spotify developed a unique Agile

model emphasizing squads, tribes,

chapters, and guilds to foster

innovation and maintain alignment

across teams.

ING

Banking

Scaled Agile

Framework

(SAFe)

Faster time

to market,

improved

collaboration

ING adopted SAFe to improve its IT

operations, achieving significant

improvements in speed and cross-

functional collaboration.

Intel

Technol

ogy

Scrum,

Kanban

Reduced

development

cycle times,

improved

quality

Intel used Agile methods like Scrum

and Kanban to streamline its

development processes, leading to

faster releases and higher product

quality.

Netflix

Media

Streamin

g

DevOps,

Continuous

Delivery

Increased

deployment

frequency,

enhanced

reliability

Netflix implemented DevOps and

Continuous Delivery practices to

achieve multiple deployments per

day, enhancing system reliability and

customer experience.

Capital

One
DevOps,

Agile

Financial

Services

Enhanced

agility,

improved

compliance

Capital One adopted Agile and

DevOps to modernize its software

development practices, resulting in

better regulatory compliance and

faster delivery of financial services.

Salesforce

Cloud

Computi

ng

Scrum, Agile

Improved

productivity,

better

product

alignment

with

customer

needs

Salesforce implemented Scrum to

enhance team productivity and

ensure that products are closely

aligned with customer requirements.

CISCO

Technol

ogy

Agile,

DevOps

Increased

deployment

speed, better

collaboration

Cisco adopted Agile and DevOps

practices to streamline its product

development and deployment

processes, resulting in faster releases

AAJRSR VOL. 4 (1) 2024 115

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

and improved collaboration between

development and operations teams.

Bosch

Engineer

ing
SAFe, Scrum

Improved

product

quality,

reduced time

to market

Bosch used SAFe and Scrum to

enhance its engineering processes,

leading to higher product quality and

faster time to market.

John

Deere
Manufac

turing

Scrum,

Kanban

Enhanced

flexibility,

faster

delivery

John Deere adopted Scrum and

Kanban to improve its manufacturing

processes, resulting in greater

flexibility and faster delivery of

products.

Barclays Banking
SAFe,

DevOps

Better risk

management,

faster

delivery

Barclays used SAFe and DevOps to

overhaul its IT operations, achieving

better risk management and quicker

delivery of banking services.

Spotify

Music

Streamin

g

Customized

Agile

Increased

innovation,

team

autonomy

Spotify's unique Agile model with

squads, tribes, chapters, and guilds

enabled high levels of innovation and

team autonomy.

Adobe Software Agile, Lean

Reduced

development

cycles,

increased

innovation

Adobe implemented Agile and Lean

methodologies to streamline its

software development processes,

resulting in shorter development

cycles and greater innovation.

American

Express

Financia

l

Services

Agile,

DevOps

Improved

operational

efficiency,

faster

deployment

American Express adopted Agile and

DevOps to enhance operational

efficiency and speed up the

deployment of financial products.

The

Federal

Reserve

Govern

ment

Scaled Agile

Framework

(SAFe)

Enhanced

transparency,

better

stakeholder

engagement

The Federal Reserve implemented

SAFe to improve transparency in its

projects and ensure better

engagement with stakeholders.

The illustration above demonstrates how diverse sectors have effectively adopted cutting-

edge techniques to reap a range of advantages, such as accelerated time to market, greater

quality, increased cooperation, and more customer needs alignment.

AAJRSR VOL. 4 (1) 2024 116

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

GLOBAL STANDARD ADOPTION OF MODERN INNOVATIONS

Flexible, effective, and high-quality software delivery has been made possible by the

widespread general acceptance of contemporary software development technologies

including Agile methodology, DevOps practices, and continuous integration/continuous

delivery (CI/CD). Agile development approaches promote iterative development, customer

collaboration, and adaptation (Mumtaz et al., 2024).

Software delivery can be automated and streamlined with the use of DevOps principles,

which combine development and operations teams. To guarantee consistent, dependable,

and quick software distribution, standard procedures like continuous integration and

deployment (CI/CD), infrastructure as code (IaC), and automated monitoring and logging

have become crucial. Tools like Jenkins, GitLab CI, Terraform, and Prometheus have been

pivotal in standardizing these practices, allowing teams to achieve continuous integration

and continuous deployment efficiently.

New tools, community involvement, and regulatory frameworks have all contributed to the

adoption of these advances as global standards, driven by the demand for increased

software development speed, quality, and flexibility. Around the world, industries have

benefited from this widespread adoption by receiving software that is more customer-

focused, dependable, and efficient.

FUTURE DIRECTIONS AND RECOMMENDATIONS FOR INNOVATION AND

STANDARD ADOPTION IN SOFTWARE DEVELOPMENT

The landscape of software development continues to evolve rapidly, driven by

technological advancements, changing business needs, and emerging practices. To stay

competitive and effective, organizations must look toward future directions and adopt

recommendations that can guide their innovation and standard adoption efforts.

AAJRSR VOL. 4 (1) 2024 117

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

Recommendation

• Organizations should invest in continuous training programs to upskill their

workforce in emerging technologies and practices such as AI, DevSecOps, and cloud-

native development.

• Foster a culture that embraces continuous improvement and learning, encouraging

teams to regularly review and refine their processes based on feedback and data-

driven insights.

• Invest in advanced tooling that supports automation across the development pipeline,

including CI/CD, testing, deployment, and monitoring tools.

• Encourage cross-functional collaboration by breaking down silos between

development, operations, security, and business teams, fostering a more integrated

and cohesive approach to software development.

• Implement scalable Agile frameworks like SAFe or LeSS to manage large-scale

projects effectively, ensuring alignment and coordination across multiple teams.

Conclusion

Innovation and standard adoption in software development have fundamentally

transformed how organizations create and deliver software. The widespread adoption of

Agile methodologies, DevOps practices, and continuous integration/continuous delivery

(CI/CD) has resulted in significant improvements in flexibility, efficiency, and quality.

These modern practices enable organizations to respond rapidly to changing market

demands, enhance collaboration across teams, and deliver high-quality software

consistently. Looking forward, the integration of emerging technologies such as AI and

machine learning, the continued expansion of DevSecOps, and the adoption of cloud-native

development will drive further advancements in the field. Additionally, the increasing use

AAJRSR VOL. 4 (1) 2024 118

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

of low-code/no-code platforms and the embrace of remote and distributed work

environments will democratize software development and foster innovation across diverse

teams. Organizations that invest in continuous training, adopt robust security practices,

leverage advanced automation tools, and promote cross-functional collaboration will be

best positioned to harness the full potential of these innovations. By fostering a culture of

continuous improvement and embracing scalable Agile frameworks, businesses can

achieve greater alignment and coordination, ensuring that they meet customer needs

effectively and efficiently. In conclusion, the ongoing evolution of software development

practices and the adoption of global standards are crucial for organizations aiming to stay

competitive in a dynamic technological landscape. Embracing these innovations not only

enhances the development process but also ensures that organizations can deliver value to

their customers consistently and sustainably.

AAJRSR VOL. 4 (1) 2024 119

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

References

Acharya, B., & Sahu, P. K. (n.d.). SOFTWARE DEVELOPMENT LIFE CYCLE

MODELS: A REVIEW PAPER.

Dhruv D., Labdhi. J. & Kunj G. (2021). REVIEW OF THE SPIRAL MODEL AND ITS

APPLICATIONS. International Journal of Engineering Applied Sciences and

Technology, 2021 Vol. 5, Issue 12, ISSN No. 2455-2143, Pages 311-316

M. I. H. (2023). Software Development Life Cycle (SDLC) Methodologies for

Information Systems Project Management. International Journal For

Multidisciplinary Research, 5(5), 6223.

https://doi.org/10.36948/ijfmr.2023.v05i05.6223

Acharya, B., & Sahu, P. K. (n.d.). SOFTWARE DEVELOPMENT LIFE CYCLE

MODELS: A REVIEW PAPER.

Alsaqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile Software Development:

Methodologies and Trends. International Journal of Interactive Mobile

Technologies (iJIM), 14(11), 246. https://doi.org/10.3991/ijim.v14i11.13269

Beecham, S., Clear, T., Lal, R., & Noll, J. (2021). Do scaling agile frameworks address

global software development risks? An empirical study. Journal of Systems and

Software, 171, 110823. https://doi.org/10.1016/j.jss.2020.110823

Harshali Rohit Kadaskar. (2024). UNLEASHING THE POWER OF DEVOPS IN

SOFTWARE DEVELOPMENT. International Journal of Scientific Research in

Modern Science and Technology, 3(3), 01–07.

https://doi.org/10.59828/ijsrmst.v3i3.185

Mohammed, I. A. (2020). Critical Analysis on the Impact Of Software Engineering in the

Technological Industry. 7(4).

Mumtaz, M. H., Khan, A., Koskula, J., Juho-Joel Luukkonen, & Mohammed, A. K.

(2024). Waterfall to DevOps transition Successful DevOps Driven Digital

Transformation. Unpublished. https://doi.org/10.13140/RG.2.2.21359.00169

Regulwar, G., Jawandhiya, P., Gulhane, V., & Tugnayat, R. (2021). Variations in V

Model for Software Development.

Ska, Y. (2019). A STUDY AND ANALYSIS OF CONTINUOUS DELIVERY,

CONTINUOUS INTEGRATION IN SOFTWARE DEVELOPMENT

ENVIRONMENT. 6(9).

AAJRSR VOL. 4 (1) 2024 120

ASIA-AFRICA JOURNAL OF RECENT SCIENTIFIC RESEARCH ISSN: 2814-0400 VOL. 4(1)
doi:10.5281/zenodo.12802812 Available online at:

www.journals.iapaar.com/index.php/aajrsr

University of Novi Sad - Faculty of Economics, Segedinski put 9-11, 24000 Subotica,

Matković, P., Tumbas, P., & University of Novi Sad - Faculty of Economics,

Segedinski put 9-11, 24000 Subotica. (2010). A Comparative Overview of the

Evolution of Software Development Models. International Journal of Industrial

Engineering and Management, 1(4), 163–172. https://doi.org/10.24867/IJIEM-

2010-4-019

Yadav, K. S. (n.d.). Review On Extreme Programming-XP.

Yu, J. (2018). Research Process on Software Development Model. IOP Conference

Series: Materials Science and Engineering, 394, 032045.

https://doi.org/10.1088/1757-899X/394/3/032045

Zahid Nawaz, Aftab, S., & Anwer, F. (2017). Simplified FDD Process Model.

International Journal of Modern Education and Computer Science, 9(9), 53–59.

https://doi.org/10.5815/ijmecs.2017.09.06

Ikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-

scale agile transformations: A systematic literature review. Journal of Systems and

Software 119, 87–108 (2016)

T. Goto, K. Tsuchida and T. Nishino, "EPISODE: An Extreme Programming Method for

Innovative Software Based on Systems Design," 2014 IIAI 3rd International

Conference on Advanced Applied Informatics, Kokura, Japan, 2014, pp. 780-784,

doi: 10.1109/IIAI-AAI.2014.157.

