

MOLECULAR STRUCTURE, VIBRATIONAL SPECTRA AND THERMODYNAMICAL PROPERTIES OF 4-(4-N-HEXYLOXYPHENYL)-2-METHYL-3-BUTYN-2-OL (4HP2M3B)

AROCKIASAMY AJAY PRAVEEN KUMAR^{1*}

^{1*}Associate Professor, Department of Physics, DMI-St Eugene University, Chibambo, Zambia

*E.mail: ajaytenoul@gmail.com

ABSTRACT

4-(4-n-hexyloxyphenyl)-2-methyl-3-butyn-2-ol compound single point energy was calculated for optimized the compound which helps the accurate path for the further computational studies. Structural, vibrational spectroscopic studies are obtained using the computational methods. Total Energy Distribution assignments are tabulated for all vibrations. This intermediate compound used as the connecting agent for laboratory reagent. Thermodynamical properties like entropy, enthalpy, Gibbs free energy are used to determine the thermal equilibrium of the compound.

KEYWORDS: 4-(4-n-hexyloxyphenyl)-2-methyl-3-butyn-2-ol, Total Energy Distribution, Gibbs free energy, enthalpy.

INTRODUCTION

Over the last decades there has been an increasing interest and research activity on Electrical and vibrational properties of organic systems. In organic materials, electrons are more accessible and optical arise from the interaction between light and electrons within individual molecular units, giving greater and faster responses. J.L. Bredas et al demonstrated that the electronic properties of organic materials develop from the interaction between light and electrons within the individual molecular units and rapid responsiveness due to the highly delocalized π electron system connecting the donor and acceptor that increase the asymmetric polarization¹. H.S.Nalwa et al analyzed the behaviuor of π -electrons that are easily affected by an external optical field as they are relatively loosely bound to the nucleus². P.N.Prasad et al showed that the delocalized orbitals may be extended over the entire molecule giving large and fast polarization³. It can be used to dramatically reduce the transmittance of a device exposed to high energy

inputs⁴. It is the base for all the photonic technologies. J.Zyss et al synthesized the organic compounds with large dipole moment which depicts the nonlinear susceptibilities of organic materials far larger than the inorganic optical materials⁵. The high optical non linearity makes them a promising material for optoelectronics and nonlinear optical applications⁶.

2-methyl-3-butyn-2-ol and their derivatives are known for their importance in biology and material science. The interesting properties of 2-methyl-3-butyn-2ol (2M3BY) fascinate the agrochemical and specialty chemical industrialists. It is exploited as an acetylene precursor in the synthesis of suicide inactivators of monoamine oxidase for Mannich reaction⁷. It was reported that 2-methyl-3-buten-2-ol is effectively replaced with MBY in baits for trapping IPS typographus and also⁸. V. V. Brei et al correlated the strength of the basic sites of the catalyst and their activity⁹.Their properties are determined by the triple bond and involved in 99semihydrogenation of nanoparticles ^{10, 11, 12}.

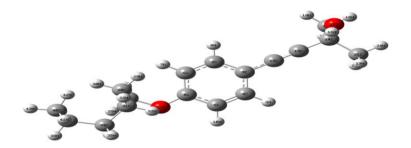
The target compound was synthesized on reacting 4-iodophenol with 1bromohexane in the presence of anhy. K_2CO_3 undergo O-Alkylation gave the ether, which was then coupled with 2-methyl-3-butyn-2-ol in Sonogashira reaction conditions to provide the protected phenylacetylene¹³.

The present letter 4HP2M3B have been inspected by both observed and calculation method. The literature review concluded that, there are no publications of the title compound 4HP2M3B using the theoretical methods. From the equilibrium molecular structure, parameters and vibrational assignments help to determine the results of the interior properties of the molecules. Thermo dynamical properties are predicted using the DFT methods using the hybrid basis set.

COMPUTATIONAL DETAILS

The GAUSSIAN 09W program is used to predict the quantum computational calculations of 4HP2M3B with the original version along with three Asia-Africa Journal of Recent Scientific Research (AAJRSR) | 100

parameters functional by way of applying Becke-Lee-Yang-Parr hybrid method ¹⁴ level with different basis sets on Intel Core i3 1.9GHz processor personal computer to derive the complete geometry optimization. Gaussian software is a super positioning tool for developing fields of computational physics like structural analysis, reaction mechanisms, potential energy values, charge distributions and excitation energies of the compound ¹⁵. The single point energy calculation is computing the energies of specific molecular structures and the allied molecular properties are predicted initially. Geometry optimizations calculating equilibrium structure of molecules, optimizing transition structures and energy minimizations at dynamic basic sets. The spectra are computerized using the B3LYP with 6-31+G (d, p) basic set and the output spectra are monitored threw Gauss sum program, which gives the Raman intensities spectra directly. This program equating the intensity theory of Raman scattering derived relationship and produces the modified Raman intensities data.


Scaling factors initiated by a least square optimization of the computed to the experimental data to fit both the experimental as well as theoretical results. Vibrational frequencies range of wave numbers above 2319cm⁻¹ are scaled as 0.9959 and below 2319cm⁻¹ scaled as 0.9963 for B3LYP¹⁶. After scaled with the scaling factor, the deviation from the experiments is less than 10cm⁻¹ with a few exceptions. The vibrational assignments with Total Energy Distribution (TED) were calculated and explained using the Scaled quantum mechanical program using Vibrational Energy Distribution Analysis VEDA 4.0 Software ^{17, 18, 19}. An elevated degree of precision as the customary consideration along with obtainable linked by the GAUSSVIEW program are made by the molecules vibrational frequency assignments.

The electronic oscillatory frequency and electronic properties such as HOMO (higher occupied molecular orbital) and LUMO (lowest unoccupied

molecular orbital) orbital energy distribution, Mulliken atomic charge distribution and thermo dynamical parameters are resolute by the time-dependent DFT (TD-DFT)²⁰. The energy absorption spectra and energy gap plot drawn from Gauss view 5.0 programs ²¹. Molecular Electrostatic Potential (MEP) map had been drawn. The polarizability and hyperpolarizability is calculated to understand the frequency doubling of the Second Harmonic Generation (SHG) behavior of 4HP2M3B. At last, investigations are conducted to find the density of states of different atoms, total density of states and band gap studies are found using theoretical replicas.

STRUCTURAL PARAMETERS

Synthesized compound structure was drawn by input software Gauss View 09W. The structure was optimized via some of hybrid basis sets in Gaussian 09W. Global minimization energy of -812.687 a.u got from basis set of B3LYP/6-31(d,p) which is a good one, while comparing with other basis sets. Optimized structure of 4HP2M3B is shown in Fig. 1. Optimized parameters are given in Table 1. C1 point

Fig. 1. Optimized structure of 4HP2M3B

group symmetry fit into 4HP2M3B compound. Carbon and carbon bond lengths have some differentiations were placed. The greater value found for CC bond length which connects with oxygen. Other combination bonds are not greater than oxygen combo for CC bond. Oxygen carbon is smaller value of all bond length. Hexyloxy group was attached to para position of benzene ring which can exist in variety of conformations. The interaction of alkyne group of 2-methyl-3-bytyn -2-ol with the substituent on the ring is of great importance in determining its structural and vibrational properties. The changes in charge distribution on the carbon atom can change in the frequency or bond length of CH bond to the benzene ring ^{22, 23}.

VIBRATIONAL ASSIGNMENTS

In the current research, the IR and Raman spectroscopy for title compound computed through hybrid method. Fig. 2 & 3 has shown the IR & Raman spectra respectively. 123 modes of normal vibrations found by the VEDA software and tabulated in Table 2. Table illustrated the 69 CH modes, 42 ν modes, 41 β modes and 40 τ modes of vibrations in every atom. TED assignments demonstrated and computerized in this portion will help the researchers for our feature criteria.

CH aroma vibrations

The bands between 3100-3000cm⁻¹ are CH heterocyclic aromatic compounds which are very close to the benzene rings. This article compound contains the 3000-3800cm⁻¹ range for this particular heterocyclic aroma vibration in the DFT level. Swarnalatha et al. proposed, position and nature of the compound should not have more change by the proxy compounds when compared to others ²⁴. Hetero aroma CH modes in-plane and Out-of-plane lie on the region 1500-1000cm⁻

¹and 1000-750cm⁻¹ respectively²⁵. The thirty four β vibrations and nineteen torsion (τ) vibrations are found for the title compound. The calculated frequency values at 936-1552cm⁻¹ and 714-1425cm⁻¹ are assigned in carbon hydrogen β vibration (mode no.28-77) and τ vibration (mode no.43-88), respectively.

C-C and C-C-C vibrations

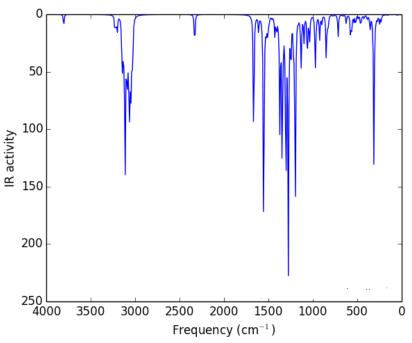
Benzene ring has almost the same length of the all carbons bond and minimum deviation and Hexyloxy and alkyne groups are substituent for ring. The twenty four stretching (mode no. 25, 26, 40, 52, 54, 55, 63, 64, 65, 66, 67, 72, 73, 75, 77, 78, 79, 80, 84, 85, 86, 89, 90, 110) carbon vibrations slouch in the region 500-1850 cm⁻¹ and twenty bending of vibrations slouch above the region 1300cm⁻¹ ²⁶. In general, the bands around 1400–1650 cm⁻¹ in benzene derivatives are assigned to skeletal stretching CC bands ^{27, 28}. Experimental IR data observed at

2230 and 1601cm⁻¹ range for this current study which has good agreement with theoretical range of 2319, 1658, 1603 cm⁻¹. The spectral computerized values of C-C bending modes at 1028, 832, 774, 660, 623, 566, 487, 461, 447, 379, 328, 290, 272, 249, 160, 112, 47 cm⁻¹ calculated.

CCCC torsional vibrations

The ring torsions have been assigned in region at below 800cm⁻¹ which is discussed in present paper referred by earlier reports^{29.} These peaks have been calculated at the region at 725, 566, 538, 447, 425, 421, 387, 249, 146, 99, 60, 53, 38, 17cm⁻¹ by B3LYP methods which are well merge with observed values. And these wavenumbers are mixed with CCCO torsions in the investigated molecules.

C-O vibrations


The observed region 1260–1000 cm⁻¹ is the best frequency vibration for carbonyl group ³⁰. For the reason that of its sky-scraping intensity ^{31, 32} and the

comparative interference-free province in which it occurs, this band is logically effortless to distinguish. The computed regions 1275, 1200, 1099, 1062, 972, 923, 774 cm⁻¹ are tabulated by hybrid methods for carbonyl group vibrations.

Methyl group

At about 1426-1406 cm⁻¹ range are calculated in the deformations of these methyl group rocking modes. In the research paper, moieties are incorporate with methyl group and nigh on the equivalent enormity and intensity. Dealing of skeletal stretching modes, the methyl rocking was susceptible and variable in position ³³. Typically, destitute ranges are monitored at 1120-1050 cm⁻¹ and 900-800 cm^{-1 34, 35}.

The destitute bands at 1217 and 1036 cm⁻¹ by the major involvement to the β Rtrigd and Rtrigd were corresponding for the β and δ rocking modes, respectively. Twisting of CH₃ modes are anticipated underneath 421 cm⁻¹. This mode was

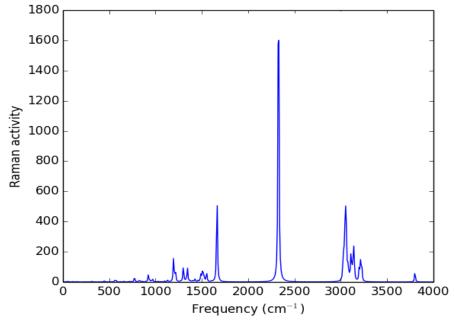

computed for two basis sets at the modes 51 and 95 devoid of sustain by TEDs.

Fig. 2. FTIR spectra for 4HP2M3B

Fig. 3. FTR spectra for 4HP2M3B

THERMODYNAMIC PARAMETERS

The theoretical harmonic frequencies and the quantities are tabulated in Table 3. The standard statistical thermodynamic functions: Self consistent field energy, Zero-point vibrational energy, Rotational constants, Rotational temperatures, standard heat capacities, entropies, enthalpy and Gibbs free energy for the title compounds³⁶. The margin values of 4HP2M3B gives the changes in the total entropy at room temperature. The energies of whole molecules, the change in the self-consistent field energy of 4HP2M3B are tabulated.

CONCLUSION

The research the experimental FT-IR, FTR spectroscopic studies are investigated for the first time. The theoretical spectra are predicted using computational methods and well agreed with experimental results. The molecular structure was characterized by ¹H Nuclear Magnetic Resonance Spectroscopy, Infrared Spectroscopy, Mass Spectroscopy and Elemental Analysis. Structure of

the compound is confirmed using the computational spectral studies and geometrical parameters. This study is helpful for further studies like thermo dynamical studies. The vibrational assignments of the 4HP2M3B are assigned with TED value. Thermodynamic parameters also tabulated.

REFERENCES

- [1] Bredas, J. L., Adant, C., Tackx, P., Persoons, A., & amp; Pierce, B. M. (1994). Thirdorder Nonlinear Optical Response in Organic Materials: Theoretical and experimental aspects. Chemical Reviews, 94(1), 243–278. https://doi.org/10.1021/cr00025a008.
- [2] Ames, D. (1997). Alzheimer's disease Zaven S. Khachaturian & amp; Teresa S. Radebaugh (eds.). Boca Raton, FL: CRC Press, 1996, 351 pp., \$US 69.95. International Psychogeriatrics, 9(4), 479–480. https://doi.org/10.1017/s1041610297214626.
- [3] Pethrick, R. A. (1991). Introduction to nonlinear optical effects in molecules and polymers paras N. Prasad and David J. Williams, John Wiley & Comparison, New York, 1991. pp. x + 307, price £39.80. ISBN 0-471-51 562-0. Polymer International, 25(3), 199–199. https://doi.org/10.1002/pi.4990250317.
- [4] Kruhlak, R. J., & amp; Kuzyk, M. G. (1998). Third-Order Nonlinear Optical Materials. https://doi.org/10.1117/12.328190.
- [5] Nonlinear Optical Properties of Organic Molecules and Crystals. Herausgegeben vonD.
 S. Chemla undJ. Zyss. Academic Press, Orlando, FL (USA) 1987. XIII, 482 S., geb. \$
 67.50. ISBN 0-12-170611-7
- [6] Gowda, A., Jacob, L., Patra, A., George, A., Philip, R., & Kumar, S. (2019b). Synthesis, mesomorphic properties and nonlinear optical studies of alkyl and alkoxy phenylacetylene containing phenazine fused extended triphenylene discotic liquid crystalline dyes. Dyes and Pigments, 160, 128–135. https://doi.org/10.1016/j.dyepig.2018.07.052.
- [7] Macgregor, R. R., Fowler, J. S., Wolf, A. P., Halldin, C., & Langström, B. (1988). Synthesis of suicide inhibitors of monoamine oxidase: Carbon-11 labeled clorgyline, Ldeprenyl and D-deprenyl. Journal of Labelled Compounds and Radiopharmaceuticals, 25(1), 1–9. https://doi.org/10.1002/jlcr.2580250102.
- [8] Eidmann, H. H., Baeckström, P., Harding, S., Norin, T., Vrkoč, J., & Weslien, J. (1987). Methylbutynol effectively replaces methylbutenol, a pheromone component ofIps typographus (L.) (Coleoptera: Scolytidae). Journal of Chemical Ecology, 13(6), 1555– 1560. https://doi.org/10.1007/bf01012297.
- [9] Brei, V. V. (2008). Correlation between the strength of the basic sites of catalysts and their activity in the decomposition of 2-methyl-3-butyn-2-ol as a test reaction. Theoretical and Experimental Chemistry, 44(5), 320–324. https://doi.org/10.1007/s11237-008-9040y.
- [10] Rebrov, E. V., Klinger, E. A., Berenguer-Murcia, A., Sulman, E. M., & Schouten, J. C. (2009). Selective Hydrogenation of 2-Methyl-3-butyne-2-ol in a Wall-Coated Capillary

Microreactor with a Pd25Zn75/TiO2 Catalyst. Organic Process Research & Development, 13(5), 991–998. https://doi.org/10.1021/op900085b.

- [11] Crespo-Quesada, M., Grasemann, M., Semagina, N., Renken, A., & Kiwi-Minsker, L. (2009). Kinetics of the solvent-free hydrogenation of 2-methyl-3-butyn-2-ol over a structured Pd-based catalyst. Catalysis Today, 147(3–4), 247–254. https://doi.org/10.1016/j.cattod.2008.09.035.
- [12] Okhlopkova, L. B., Matus, E. V., Prosvirin, I. P., Kerzhentsev, M. A., & Ismagilov, Z. R. (2015). Selective hydrogenation of 2-methyl-3-butyn-2-ol catalyzed by embedded polymer-protected PdZn nanoparticles. Journal of Nanoparticle Research, 17(12). https://doi.org/10.1007/s11051-015-3289-6.
- [13] Takahashi, S., Kuroyama, Y., Sonogashira, K., & Hagihara, N. (1980). A Convenient Synthesis of Ethynylarenes and Diethynylarenes. Synthesis, 1980(08), 627–630. https://doi.org/10.1055/s-1980-29145.
- [14] Kumar, A. A. P., & Raman, R. G. (2017). Theoretical Spectroscopic and Second Harmonic Generations Studies of 5–Fluoro-2-Methyl Benzonitrile. Oriental Journal of Chemistry, 33(5), 2412–2420. https://doi.org/10.13005/ojc/330534.
- [15] Shajikumar, S., Kumar, A. A. P., & Raman, R. G. (2017). Theoretical Investigations and Second Harmonic Generations Studies of 2-Amino-5-Nitrobenzophenone. Journal of Chemical and Pharmaceutical Sciences. 10(4), 75-83. https://www.jchps.com/issues/Volume%2010_Issue%204/20171026_045318_0020617.p df.
- [16] Praveen Kumar, A. A., & Ganapathi Raman, R. (2017). Spectroscopic and Second Harmonic Generations Studies of 5-Bromo-2- Methoxybenzonitrile by DFT. Oriental Journal of Chemistry, 33(6), 3077–3085. <u>https://doi.org/10.13005/ojc/330648</u>.
- [17] Praveen Kumar, A. A., & Ganapathi Raman, R. (2017). Experimental and theoretical spectroscopic investigations of 2-Bromo-4-methylbenzonitrile. Journal of Chemical and Pharmaceutical Sciences, 2017, 10(3), 1309-1316. https://www.jchps.com/issues/Volume%2010_Issue%203/20171025_074209_0070417.p df.
- [18] Henry, J., Ajaypraveenkumar, A., Sivakumar, G., & Mohanraj, K. (2017). A new approach for deposition of silver film from AgCl through successive ionic layer adsorption and reaction technique. Journal of Central South University, 24(12), 2793– 2798. https://doi.org/10.1007/s11771-017-3693-4.
- [19] Shajikumar, S., & Raman, R. G. (2018). Experimental and Theoretical Spectroscopic Investigations of 4-Bromo-3-methylbenzonitrile. Oriental Journal of Chemistry, 34(3), 1478–1483. https://doi.org/10.13005/ojc/340338.
- [20] Ajay Praveen Kumar, A., & Ganapathi Raman, R. (2017). Spectroscopic Analysis, Electronic, Optical and Thermodynamical Properties of 2-amino-5-fluorobenzonitrile by Ab Initio Methods. Der Pharma Chemica, 9(15), 56–67. http://www.derpharmachemica.com/archive.html).
- [21] Ajaypraveenkumar, A., Ganapathi Raman, R., & Sebastian, S. (2017). Geometrical Structure, Vibrational Spectra, NLO, NBO, Electronic Transitions and Thermo Dynamical Analysis of 5-Fluoro-2-Methylbenzonitrile by DFT Computational Method.

Springer Proceedings in Physics, 629–654. https://doi.org/10.1007/978-3-319-44890-9_54.

- [22] Fogarasi, G., Zhou, X., Taylor, P. W., & Pulay, P. (1992). The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. Journal of the American Chemical Society, 114(21), 8191– 8201. https://doi.org/10.1021/ja00047a032.
- [23] Chohan, Z. H., Shad, H. A., & Tahir, M. N. (2009). 4-[(E)-(5-Bromo-2hydroxyphenyl)methylideneamino]benzenesulfonamide. Acta Crystallographica Section E Structure Reports Online, 65(10), o2426. https://doi.org/10.1107/s1600536809036010.
- [24] Swarnalatha, N., Gunasekaran, S., Nagarajan, M., Srinivasan, S., Sankari, G., & Ramkumaar, G. (2015). Vibrational, UV spectra, NBO, first order hyperpolarizability and HOMO–LUMO analysis of carvedilol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 567–578. https://doi.org/10.1016/j.saa.2014.09.070.
- [25] Yadav, B. & Tyagi, S.K. & Seema, (2006). Study of vibrational spectra of 4-methyl-3nitrobenzaldehyde. Indian Journal of Pure and Applied Physics. 44. 644-648.
- [26] Premkumar, S., Jawahar, A., Mathavan, T., Kumara Dhas, M., Sathe, V., & Milton Franklin Benial, A. (2014). DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 74–83. https://doi.org/10.1016/j.saa.2014.02.147.
- [27] Sundaraganesan, N., Umamaheswari, H., Meganathan, C., & Sebastian, S. (2008). Molecular structure and vibrational spectra of 4-nitrobenzylchloride byab initioHartree– Fock and density functional methods. Molecular Simulation, 34(6), 619–630. https://doi.org/10.1080/08927020802036013.
- [28] Sert, Y., ÇıRak, A., & Ucun, F. (2013). Vibrational analysis of 4-chloro-3nitrobenzonitrile by quantum chemical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 248–255. https://doi.org/10.1016/j.saa.2013.01.046.
- [29] Rastogi, V. K., Singhal, S., Palafox, M. A., & Ramana Rao, G. (2010). Vibrational spectra, normal coordinate analysis and thermodynamics of 2, 5-difluorobenzonitrile. Indian Journal of Physics, 84(2), 151–165. https://doi.org/10.1007/s12648-010-0034-y.
- [30] Elanthiraiyan, M., Jayasudha, B., & Arivazhagan, M. (2015). Molecular structure, vibrational spectroscopy, NBO and HOMO, LUMO studies of o-methoxybenzonitrile. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 543–552. https://doi.org/10.1016/j.saa.2014.04.103.
- [31] Chaitanya, K., Santhamma, C., Prasad, K. V., & Veeraiah, V. (2011). Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of 3,5-dimethylbenzophenone by ab inito HF and density functional method. Journal of Atomic and Molecular Sciences, 3(1), 1–22. https://doi.org/10.4208/jams.042611.051411a.
- [32] Fraser, L. R. (1991). Gametes Galore. The Molecular Biology of Fertilization (1989).Edited by H. Schatten and G. Schatten. Academic Press: San Diego. 384pp. \$85. The Cell

Biology of Fertilization (1989). Edited by H. Schatten and G. Schatten. Academic Press: San Diego. 404pp. BioEssays, 13(2), 95–96. https://doi.org/10.1002/bies.950130213.

- [33] Praveen Kumar, A. A., & Ganapathi Raman, R. (2017). Vibrational Frequencies, NBO Analysis, NLO Properties, UV-Visible and Homo-Lumo Analysis of 2-Chloro-3-Methoxybenzonitrile with Experimental (FT-IR and FT-Raman) Techniques and Quantum Mechanical Calculations. Journal of Chemical and Pharmaceutical Sciences, SI1, 27-41.
- [34] Shajikumar, S., Kumar, A. A. P., & Raman, R. G. (2017). Molecular Optimized Structure, NLO Applications Like Frequency Doubling and SHG, Fock Matrix of NBO Analysis, HOMO and LUMO Frontier Orbital Energies Analysis, Different Thermo chemistry Properties of 4-Fluoro-3-Methylbenzonitrile Based on Quantum Chemical Calculations. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2063-2072.
- [35] Kumar, A. A. P., & Raman, R. G. (2017). Vibrational Frequencies, NBO Analysis, NLO Properties, UV-Visible and Homo-Lumo Analysis of 2-Chloro-3-Methoxybenzonitrile with Experimental (FT-IR and FT-Raman) Techniques and Quantum Mechanical Calculations. Journal of Chemical and Pharmaceutical Sciences, SI1, 27-41.
- [36] Britton, D., Noland, W. E., & Pinnow, M. J. (2000). Isomorphism and pseudosymmetry in 2,6-dichloro- and 2,6-dibromobenzonitrile. Acta Crystallographica Section B Structural Science, 56(5), 822–827. https://doi.org/10.1107/s0108768100003773.

TABLE I Sected Optimized Sconetical Lataneters of Hit 2005							
Bond Length		Bond Angle		Dihedral Angel			
C1-C2	1.401	C2-C1-C6 119.		C6-C1-C2-C3	-2.32		
C1-C6	1.400	C2-C1-H7	120.08	С6-С1-С2-Н8	177.82		
C1-H7	1.070	C6-C1-H7	119.97	H7-C1-C2-C3	178.21		
C2-C3	1.402	C1-C2-C3	119.96	Н7-С1-С2-Н8	-1.65		
C2-H8	1.070	С1-С2-Н8	119.98	C2-C1-C6-C5	3.88		
C3-C4	1.402	С3-С2-Н8	120.05	C2-C1-C6-O11	-175.41		
C3-C12	1.543	C2-C3-C4	120.00	H7-C1-C6-C5	-176.65		
C4-C5	1.403	C2-C3-C12	119.88	H7-C1-C6-O11	4.06		
C4-H9	1.070	C4-C3-C12	120.12	C1-C2-C3-C4	-0.70		
C5-C6	1.402	C3-C4-C5	119.98	C1-C2-C3-C12	179.27		
C5-H10	1.071	С3-С4-Н9	119.99	H8-C2-C3-C4	179.16		
C6-O11	1.423	С5-С4-Н9	120.03	H8-C2-C3-C12	-0.87		
O11-C25	1.423	C4-C5-C6	119.85	C2-C3-C4-C5	2.16		
C12-C13	1.213	C4-C5-H10	120.13	С2-С3-С4-Н9	-178.19		
C13-C14	1.533	C6-C5-H10	120.02	C12-C3-C4-C5	-177.81		
C14-O15	1.433	C1-C6-C5	120.14	С12-С3-С4-Н9	1.84		
C14-C17	1.544	C1-C6-O11	119.65	C2-C3-C14-O15	12.81		
C14-C21	1.544	C5-C6-O11	120.20	C2-C3-C14-C17	-104.92		
O15-H16	0.958	C6-O11C25	113.00	C2-C3-C14-H21	133.02		
C17-H18	1.062	C13-C14-O15	109.43	C4-C3-C14-O15	-169.42		
C17-H19	1.061	C13-C14-C17	109.51	C4-C3-C14-C17	72.85		
C17-H20	1.064	C13-C14-C21	109.34	C4-C3-C14-H21	-49.21		
C21-H22	1.070	O15-C14-C17	109.45	C3-C4-C5-C6	-0.60		
С21-Н23	1.071	O15-C14-C21	109.42	C3-C4-C5-H10	179.43		
C21-H24	1.072	C17-C14-C21	109.67	H9-C4-C5-C6	179.75		
C25-H26	1.063	C14-C15-H16	109.79	H9-C4-C5-H10	-0.21		
C25-H27	1.062	С14-С17-Н18	109.81	C4-C5-C6-C1	-2.42		
C25-C28	1.532	C14-C17-H19	109.41	C4-C5-C6-O11	176.87		
C25-C37	1.670	С14-С17-Н20	109.84	H10-C5-C6-C1	177.54		
С25-Н39	1.146	H18-C17-H19	109.26	H10-C5-C6-O11	-3.17		
H26-C34	0.891	H18-C17-H20	109.19	C1-C6-O11-C25	-106.81		
H26-C37	1.059	H19-C17-H20	109.32	C5-C6-O11-C25	73.90		
C28-2H9	1.063	C14-C21-H22	85.21	С6-О11-С25-Н26	177.52		
C28-H30	1.072	С14-С21-Н23	81.49	С6-О11-С25-Н27	56.95		
C28-C31	1.532	С14-С21-Н24	140.55	C6-O11-C25-C28	-63.55		
С31-Н32	1.063	H22-C21-H23	138.38	C6-O11-C25-C37	137.43		
С31-Н33	1.065	H22-C21-H24	86.38	С6-О11-С25-Н39	106.03		
C31-C34	1.531	H23-C21-H24	79.63	С13-С14-О15-Н16	60.33		
C34-H35	1.074	O11-C25-H26	109.07	С17-С14-О15-Н16	-179.66		
	r		с		r		

TABLE 1 Selected Optimized Geometrical Parameters of 4HP2M3B

C34-H36	1.062	O11-C25-H27	110.27	C21-C14-O15-H16	-59.46
C34-C37	1.538	O11-C25-C28	109.20	С13-С14-С17-Н18	177.02
С37-Н38	1.077	O11-C25-C37	107.49	C13-C14-C17-H19	57.12
С37-Н39	1.077	O11-C25-H39	82.57	С13-С14-С17-Н20	-62.89
C37-C40	1.544	H26-C25-H27	109.74	O15-C14-C17-H18	57.06
C40-H41	1.037	H26-C25-C28	108.93	O15-C14-C17-H19	-62.85
C40-H42	1.099	H27-C25-H39	75.21	О15-С14-С17-Н20	177.15
C40-H43	1.055	H27-C25-C28	109.61	C21-C14-C17-H18	-62.99

TABLE 2 Selected Experimental and Theoretical Ted Vibrational Assignments for4HP2M3B Along With Their Intensities

Nor mal	Sym metr	Experimen tal (cm ⁻¹)		nbers(cm ⁻¹) -31G(d,p)	Wavenumbers(cm ⁻¹) B3LYP/6-31G(d,p)		
Mo des	y spice s	FT-IR	Scaled	Un Scaled	IR Intensity (Km/mol)	Raman Intensity	Vibrational assignments
1	Α		3787	3803	11.081	74.463	vCH(100)
2	Α	3363	3214	3227	13.353	196.525	vCH(99)
3	Α		3202	3216	7.256	217.694	vCH(99)
23	Α	2929	3016	3028	23.267	242.889	vCH(93)
24	Α	2864	3013	3026	24.873	103.317	vCH(96)
25	А	2230	2319	2329	29.736	12188.60 9	vCC(93)
26	Α		1658	1665	120.063	7544.074	vCC(54)
27	Α	1601	1603	1609	14.722	52.492	vCC(60)+βCCC(13)
28	Α		1547	1552	224.971	938.764	β HCC(55)+ β CCC(21)
29	Α		1521	1527	3.660	277.034	βHCH(69)
30	Α		1520	1525	7.875	44.178	βHCH(76)
31	А		1514	1519	0.945	136.410	βHCC(11)+βHCH(32)+τ HCCC(28)
32	А		1512	1518	5.484	339.689	βHCC(10)+βHCH(11)+τ HCCC(31)
33	Α		1505	1511	1.647	391.667	βHCH(70)
38	Α		1486	1492	1.202	94.404	β HCH(64)+ τ HCCC(22)
39	Α		1483	1488	1.800	467.597	βHCH(77)
40	Α		1453	1459	1.822	129.960	vCC(56)+βHCC(21)
41	Α		1425	1430	4.361	77.581	βHCC(24)+βHCH(46)
42	А		1421	1426	4.610	67.169	βHCH(27)+βHCC(20)+τ CHHH(31)
43	А		1420	1425	10.085	196.001	βHCO(11)+βHCC(14)+δ CHCH(34)+τHCCC(10)
44	А		1404	1409	0.492	36.994	βHCC(43)
45	А		1401	1406	12.694	27.160	βHCH(16)+βHCC(10)+δ CHHH(56)
46	А		1397	1402	0.824	82.641	τHCCC(32)
47	А		1378	1383	4.732	68.209	β HCC(15)+ τ HCCC(31)
48	А		1369	1374	9.188	22.271	τHCCH(28)+τHCCC(10)

Asia-Africa Journal of Recent Scientific Research (AAJRSR) | 112

49	А	1365	1370	93.514	101.563	βHOC(49)
50	А	1341	1346	65.903	1526.521	δCHCH(11)+βHCC(12)+ vCC(10)
52	А	1324	1329	13.050	229.508	vCC(18)+βHCC(68)
53	А	1304	1309	31.917	65.430	βHCO(17)+βHCC(14)
56	А	1270	1275	219.545	89.795	vOC(20)+βHCO(12)
57	А	1241	1246	44.093	17.188	βHCO(22)+βHCC(12)
60	А	1195	1200	51.560	615.333	vOC(10)+tHCCC(28)
61	А	1191	1195	136.064	3793.031	βHCC(37)
62	А	1157	1162	2.402	13.393	δCCOH(10)+τHCCH(10)
63	А	1137	1141	3.299	33.103	vCC(10)
64	А	1132	1136	5.628	36.542	vCC(10)+βHCC(32)
65	А	1125	1129	43.020	299.979	νCC(30)+βHOC(26)+βH CC(24)
66	А	1095	1099	22.719	175.893	vOC(15)+vCC(25)
67	А	1058	1062	40.351	63.492	vOC(37)+vCC(30)
68	А	1043	1047	2.650	22.953	βHCC(10)+δCCOH(21)
69	А	1032	1036	23.562	50.458	δCCCH(16)+βHCC(15)+ vOC(10)
70	А	1024	1028	0.595	44.730	βCCC(76)
71	А	1021	1025	0.408	92.396	βHCC(29)+δCHCH(39)+ τHCCC(10)
72	А	969	972	39.861	608.809	vOC(21)+vCC(12)+βHC C(10)
73	А	964	967	15.057	188.132	vCC(39)+tHCCH(13)
74	А	961	965	0.047	89.161	δCCCH(55)+τHCCO(34)
75	А	952	956	1.918	166.188	vCC(14)+δCCOH(11)
76	А	948	951	0.174	178.438	δ CCCH(57)+ τ HCCO(25)
77	А	933	936	0.842	418.796	vCC(32)+βHCC(26)+τH CCC(12)
78	А	920	923	21.914	2287.427	vCC(16)+vOC(31)
79	А	896	899	7.999	171.741	vCC(27)+δCCCH(13)
81	А	845	848	41.966	71.493	$\delta CCCH(22) + \tau HCCO(55)$
83	А	821	824	6.800	260.194	δCCOH(23)+τHCCO(63)
84	А	818	821	0.877	346.165	vCC(31)+βHCC(11)
85	А	771	774	1.274	2605.629	vOC(11)+vCC(11)+βCC C(11)
87	А	722	725	0.737	321.119	τCCCC(55)+δOCCC(21)
88	А	711	714	19.042	123.706	δCCCH(35)+τHCCC(11)
89	А	658	660	1.311	502.114	νCC(10)+βCCC(45)
91	А	573	576	17.098	1230.140	$\beta CCO(22) + \delta OCCC(10)$
92	А	564	566	6.361	795.819	βCCC(15)+τCCCC(23)+τ CCCO(24)
94	А	536	538	5.661	94.077	βCCO(15)+τCCCC(34)+δ OCCC(13)

TABLE 3 Theoretically Computed Energies (A.U.), Zero Point Vibrational Energies,Rotational Constants, Entropies and Dipole Moment for 4HP2M3B.

Thermodynamic parameters	B3LYP				
Self-consistent field energy (a.u)	-3012.667				
Zero point vibrational energy (kcal/mol)	75.916				
Rotational constant (GHz)	1.591				
	0.398				
	0.319				
Rotational temperature (K)	0.076				
	0.019				
	0.015				
Thermal energy (kcal/mol)				
Total	82.311				
Translational	0.889				
Rotational	0.889				
Vibrational	80.533				
Specific heat capacity at constant volum	ne (cal/mol K)				
Total	36.744				
Translational	2.981				
Rotational	2.981				
Vibrational	30.783				
Dipole moment (Debye)	2.1511Debye				
Lumo(eV)	-1.99				
Homo(eV)	-6.82				
Energy gap(eV)	-4.83				
Entropy(S)(cal/mol K)					
Total	101.468				
Translational	41.943				
Rotational	31.744				
Vibrational	27.781				
Gibbs Free Energy	0.084				
Enthalpy	-3012.549				